【摘要】x2-y2=4的焦點(diǎn)且垂直于實(shí)軸的直線與雙曲線交于A,B兩點(diǎn),則AB的長(zhǎng)為()A.2B.4C.8D.42解析:選x2-y2=4的焦點(diǎn)為(±22,0),把x=22代入并解得y=±2,∴|AB|=2-(-2)=4.2.(2
2024-12-05 06:41
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)雙曲線的標(biāo)準(zhǔn)方程課后知能檢測(cè)蘇教版選修2-1一、填空題1.(2021·南京高二檢測(cè))雙曲線x25-y24=1的焦點(diǎn)坐標(biāo)是________.【解析】∵c2=5+4=9,∴c=3,∴F(±3,0).【答案】(
2024-12-05 09:29
【摘要】曲線與方程曲線與方程yxb??k222()()xaybr????為什么?復(fù)習(xí)回顧:我們研究了直線和圓的方程.P(0,b)和斜率為k的直線l的方程為_(kāi)___________,平分第一、三象限的直線方程是______________C(a
2024-11-17 15:21
【摘要】-*-§3雙曲線-*-雙曲線及其標(biāo)準(zhǔn)方程首頁(yè)XINZHIDAOXUE新知導(dǎo)學(xué)ZHONGNANTANJIU重難探究DANGTANGJIANCE當(dāng)堂檢測(cè)學(xué)習(xí)目標(biāo)思維脈絡(luò)1.理解并掌握雙曲線的定義,了解雙曲線的焦點(diǎn)、焦距.2.掌握雙曲線的標(biāo)準(zhǔn)方程,能利用定義求標(biāo)準(zhǔn)方程
2024-11-16 23:24
【摘要】B'C'CBA251213A'xOy雙曲線的簡(jiǎn)單幾何性質(zhì)(一)【學(xué)習(xí)目標(biāo)】掌握雙曲線的范圍、對(duì)稱性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì).【自主學(xué)習(xí)】雙曲線的簡(jiǎn)單幾何性質(zhì):1.范圍、對(duì)稱性2.頂點(diǎn)頂點(diǎn):??0,),0,(21aAaA?特殊點(diǎn):
【摘要】橢圓與雙曲線的對(duì)偶性質(zhì)--(必背的經(jīng)典結(jié)論) 高三數(shù)學(xué)備課組 橢圓 1.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角. 2.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的...
2025-03-09 22:26
【摘要】拋物線的幾何性質(zhì)2復(fù)習(xí):1拋物線的幾何性質(zhì)圖形方程焦點(diǎn)準(zhǔn)線范圍頂點(diǎn)對(duì)稱軸elFyxOlFyxOlFyxOlFyxOy2=2px(p0)y2=-2px(p0)x2=2py
2024-11-18 08:56
【摘要】《雙曲線的幾何性質(zhì)》教學(xué)目標(biāo)?(對(duì)稱性、范圍、頂點(diǎn)、離心率);?.三.教學(xué)重、難點(diǎn):目標(biāo)1;數(shù)形結(jié)合思想的貫徹,運(yùn)用曲線方程研究幾何性質(zhì).2、對(duì)稱性雙曲線的幾何性質(zhì))0,0(12222????ba
2024-11-10 00:28
【摘要】雙曲線教材解讀一、知識(shí)精講1、正確理解雙曲線的定義一要注意不要將“絕對(duì)值”丟掉,否則就不是整個(gè)雙曲線了(僅表示雙曲線的一支);二要注意“常數(shù)”的條件,即常數(shù)2a|F1F2|時(shí),其軌跡不存在。2、準(zhǔn)確把握雙曲線的標(biāo)準(zhǔn)方
2024-12-05 06:39
【摘要】雙曲線及其標(biāo)準(zhǔn)方程1、定義:平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離的差的絕對(duì)值等于常數(shù)(小于|F1F2|)的點(diǎn)的軌跡叫做雙曲線,這兩個(gè)定點(diǎn)叫做雙曲線的焦點(diǎn),兩個(gè)焦點(diǎn)的距離叫做雙曲線的焦距.2、標(biāo)準(zhǔn)方程:12222??byax(a>0,b>0)或12222??bxay(a>0,b>0)3、a、b、c三者之間的
2024-11-19 23:15
【摘要】雙曲線的簡(jiǎn)單幾何性質(zhì)【學(xué)習(xí)目標(biāo)】理解并掌握雙曲線的幾何性質(zhì).【重點(diǎn)難點(diǎn)】雙曲線的幾何性質(zhì).雙曲線的幾何性質(zhì)【學(xué)習(xí)過(guò)程】一、自主預(yù)習(xí)(預(yù)習(xí)教材理P56~P58,文P49~P51找出疑惑之處)復(fù)習(xí)1:寫出滿足下列條件的雙曲線的標(biāo)準(zhǔn)方程:①3,4ab??,焦點(diǎn)在x軸上;②焦點(diǎn)在
2024-12-05 06:47
【摘要】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)圓錐曲線教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):1.通過(guò)用平面截圓錐面,經(jīng)歷從具體情境中抽象出橢圓、拋物線模型的過(guò)程,掌握它們的定義,并能用數(shù)學(xué)符號(hào)或自然語(yǔ)言描述.2.通過(guò)用平面截圓錐面,感受、了解雙曲線的定義,能用數(shù)學(xué)符號(hào)或自然語(yǔ)言描述雙曲線的定義.教學(xué)重點(diǎn):橢圓、拋物線、雙曲線的定義.教學(xué)難點(diǎn):用數(shù)
2024-12-04 18:02
【摘要】圓錐曲線與方程第二章§3雙曲線雙曲線及其標(biāo)準(zhǔn)方程第二章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí),會(huì)推導(dǎo)雙曲線的標(biāo)準(zhǔn)方程.2.會(huì)用待定系數(shù)法求雙曲線的標(biāo)準(zhǔn)方程.類比橢圓的定義我們可以給出雙曲線的定義在平面內(nèi)到兩個(gè)定點(diǎn)F1、F2距離之_____的絕對(duì)值等
【摘要】雙曲線離心率求法一、雙曲線離心率的求解1、直接求出或求出a與b的比值,以求解。在雙曲線中,1,1.已知雙曲線的一條漸近線方程為y=x,則雙曲線的離心率為2.在給定橢圓中,過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為1,則該橢圓的離心率為3.已知雙曲線-=1(a)的兩條漸近線的夾角為,則雙曲線的離心率為
2025-04-04 05:07
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第2章《圓錐曲線與方程》關(guān)于雙曲線的離心率的問(wèn)題導(dǎo)學(xué)案蘇教版選修1-11、設(shè)雙曲線的一個(gè)焦點(diǎn)F,虛軸的一個(gè)端點(diǎn)B,如果直線FB與雙曲線的一條漸近線垂直則此雙曲線的離心率為2、過(guò)雙曲線)0,(12222???babyax的一個(gè)焦點(diǎn)為F作一條漸近線的垂線,垂足為
2024-11-19 17:31