【摘要】求數(shù)列通項公式的十種方法一、公式法例1已知數(shù)列滿足,,求數(shù)列的通項公式。解:兩邊除以,得,則,故數(shù)列是以為首項,以為公差的等差數(shù)列,由等差數(shù)列的通項公式,得,所以數(shù)列的通項公式為。評注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,說明數(shù)列是等差數(shù)列,再直接利用等差數(shù)列的通項公式求出,進而求出數(shù)列的通項公式。二、利用例2.若和分別表示數(shù)列和的前項和,對任意正整數(shù),.求數(shù)列的
2025-08-23 06:16
【摘要】成才之路·數(shù)學(xué)路漫漫其修遠(yuǎn)兮吾將上下而求索人教A版·必修5成才之路·數(shù)學(xué)·人教A版·必修5第二章數(shù)列第二章數(shù)列成才之路·數(shù)學(xué)·人教A版·必修5第二章
2025-04-30 04:33
【摘要】名稱等差數(shù)列概念常數(shù)性質(zhì)通項通項變形dnaan)1(1???dknaakn)(???),(*Nkn?舊知回顧從第2項起,每一項與它前一項的差等于同一個常數(shù)公差(d)d可正,可負(fù),且可以為零中項公式22baAAba????或
2025-02-21 09:52
【摘要】數(shù)列通項公式幾種求法的文獻綜述摘要;從近幾年高考的內(nèi)容來看,數(shù)列是高考的重點內(nèi)容,數(shù)列在實踐和理論中均有較高的價值,而數(shù)列的列通項公式是數(shù)列的核心內(nèi)容之一。本文從2021-2021年高考求數(shù)列通項公式有關(guān)資料查閱,對數(shù)列通項公式的常用方法做一個文獻綜述。關(guān)鍵詞;數(shù)列、通項公式、求法、綜述.高中教材中的數(shù)列有利于發(fā)展學(xué)生的發(fā)散思維能力
2025-06-02 22:50
【摘要】數(shù)列通項公式的求法集錦一、觀察法例1寫出數(shù)列的一個通項公式,使它的前5項分別是下列各數(shù)(1)3,5,9,17,33(2)-1/2,1/2,-3/8,1/4,-5/32(3)2,22,222,2222,22222注:在平時學(xué)習(xí)中要牢記常見的一些數(shù)列通項公式,如n,1/n,2n,2n+1,n!,,n(n+1)等,其他數(shù)列往往由這些基本數(shù)列和其他常數(shù)進行四則運
2025-04-02 01:08
【摘要】高一數(shù)學(xué)必修五第二章《數(shù)列》數(shù)列求和復(fù)習(xí)鞏固;;;;;:一個數(shù)列的前n項和中,可兩兩結(jié)合求解,則稱之為并項求和,若通項形如an=(-1)nf(n)的擺動數(shù)列求和,可用此法。求數(shù)列Sn=12-22+32-42+…+(-1)n-
2025-01-07 11:54
【摘要】等差數(shù)列通項公式教案一教學(xué)類型新知課二教學(xué)目標(biāo) ,使學(xué)生加深對等差數(shù)列通項公式的認(rèn)識,能解決一些簡單的問題; 、項數(shù)、公差、首項,使學(xué)生進一步體會方程思想; 3.培養(yǎng)學(xué)生觀察能力,進一步提高學(xué)生推理、歸納能力,培養(yǎng)學(xué)生的應(yīng)用意識.三教學(xué)重點,難點.2通項公式的理解與掌握;教學(xué)難點是掌握公式的推導(dǎo)過程以及對公式靈活運用.四教學(xué)用具實物投影儀,多
2025-07-25 04:58
【摘要】數(shù)列通項公式解法總結(jié)及習(xí)題訓(xùn)練(附答案):①等差數(shù)列通項公式;②等比數(shù)列通項公式。:已知(即)求,用作差法:nS12()naf???na。?1,()na???:已知求,用作商法:。12()nfA?n(1),2)nfn???????:若求:。1()naf???na1221()()(nnaaa??????(:已知求,用累乘法:。1)f?
2025-06-26 05:20
【摘要】求數(shù)列通項公式的十種方法一、公式法例1已知數(shù)列滿足,,求數(shù)列的通項公式。解:兩邊除以,得,則,故數(shù)列是以為首項,以為公差的等差數(shù)列,由等差數(shù)列的通項公式,得,所以數(shù)列的通項公式為。評注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,說明數(shù)列是等差數(shù)列,再直接利用等差數(shù)列的通項公式求出,進而求出數(shù)列的通項公式。二、累加法例2已知數(shù)列滿足,求數(shù)列的通項公式。解:由得則
【摘要】等比數(shù)列的通項公式(2)陽光國際學(xué)校高中部數(shù)學(xué)組復(fù)習(xí)一.等比數(shù)列的定義二.等比數(shù)列的通項公式an=a1qn-1q0時,數(shù)列各項同號q0時,數(shù)列各項正負(fù)相間①{an}是等比數(shù)列?=q(q是常數(shù),n∈N*
2025-11-03 16:41
【摘要】......求遞推數(shù)列通項公式的十種策略例析遞推數(shù)列的題型多樣,求遞推數(shù)列的通項公式的方法也非常靈活,往往可以通過適當(dāng)?shù)牟呗詫栴}化歸為等差數(shù)列或等比數(shù)列問題加以解決,亦可采用不完全歸納法的方法,由特殊情形推導(dǎo)出一般情形,進而用數(shù)學(xué)歸納法加以證明,因而求遞推數(shù)列的通項公式問題成為了高考命題中頗受青睞的考查內(nèi)容。筆者試給出求遞推數(shù)列通項
2025-06-27 04:51
【摘要】專題:數(shù)列的通項求通項的常見問題:1、特殊數(shù)列的通項2、構(gòu)造特殊數(shù)列,間接求通項3、由Sn求an4、由遞推關(guān)系求an已知數(shù)列{an}中,a1=2。(1)求證:數(shù)列是等差數(shù)列。(2)求數(shù)列{an}的通項公式?!夯仡櫋?/span>
2025-10-31 13:17
【摘要】等差數(shù)列的通項公式及應(yīng)用1.已知等差數(shù)列的通項公式為an=-3n+a,a為常數(shù),則公差d=[] 2.已知等差數(shù)列{an}中,a8比a3小10,則公差d的值為[] A.2B.-2C.5D.-53.已知數(shù)列a,-15,b,c,45是等差數(shù)列,則a+b+c的值是[] A.-5B.0C.5D.104.已知等差數(shù)列{an}中,a1+a2
2025-03-25 06:56
【摘要】等比數(shù)列的通項公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用表示,2a…,第n項用表示,na…,數(shù)列的一般形式可以寫成:,1
2025-11-02 08:58
【摘要】
2025-11-03 18:09