【摘要】微積分的名稱?Calculus一詞是源自拉丁文,原意是指石子。因?yàn)楣艢W洲人喜歡用石子來(lái)幫助計(jì)算,所以calculus被引申作計(jì)算的意思。?現(xiàn)時(shí)醫(yī)學(xué)上仍用calculus一詞代表石子。例:acalculousman不是指一位精通微積分的人,而是一位患腎結(jié)石的病人!?微積分這個(gè)中文詞,最早見諸清代數(shù)學(xué)家李善蘭和英國(guó)
2024-09-29 08:13
【摘要】主要內(nèi)容典型例題第十一章無(wú)窮級(jí)數(shù)習(xí)題課常數(shù)項(xiàng)級(jí)數(shù)函數(shù)項(xiàng)級(jí)數(shù)正項(xiàng)級(jí)數(shù)交錯(cuò)級(jí)數(shù)冪級(jí)數(shù)收斂半徑R泰勒展開式數(shù)或函數(shù)函數(shù)數(shù)一般項(xiàng)級(jí)數(shù)泰勒級(jí)數(shù)0)(?xRn為
2025-08-21 12:39
【摘要】《微積分》各章習(xí)題及解答第一章函數(shù)極限與連續(xù)一、填空題1、已知,則。2、。3、時(shí),是的階無(wú)窮小。4、成立的為。5、。6、在處連續(xù),則。7、。8、設(shè)的定義域是,則的定義域是__________。9、函數(shù)的反函數(shù)為_________。10、設(shè)
2025-06-20 03:33
【摘要】第5章定積分及其應(yīng)用微積分基本公式習(xí)題解1.設(shè)函數(shù),求,?!窘狻坑深}設(shè)得,于是得,。2.計(jì)算下列各導(dǎo)數(shù):⑴;【解】。⑵;【解】。⑶;【解】。⑷。【解】。3.設(shè)函數(shù)由方程所確定,求。【解法一】方程中完成積分即為,亦即為,得知,解出,得,于是得?!窘?/span>
2025-07-26 04:21
【摘要】聊聊天微積分的產(chǎn)生——17、18、19世紀(jì)的微積分.很久很久以前,在很遠(yuǎn)很遠(yuǎn)的一塊古老的土地上,有一群智者……開普勒、笛卡爾、卡瓦列里、費(fèi)馬、帕斯卡、格雷戈里、羅伯瓦爾、惠更斯、巴羅、瓦里斯、牛頓、萊布尼茨、…….任何研究工作的開端,幾乎都是極不完美的嘗試,
2025-08-01 15:02
【摘要】第四節(jié)高階導(dǎo)數(shù)引例:變速直線運(yùn)動(dòng)),(tss?)()(tstv??則瞬時(shí)速度為的變化率對(duì)時(shí)間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點(diǎn)為函數(shù)則稱存在即處可導(dǎo)在點(diǎn)的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-04-21 04:25
【摘要】第二節(jié)求導(dǎo)法則一、和、差、積、商的求導(dǎo)法則定理并且可導(dǎo)處也在點(diǎn)分母不為零們的和、差、積、商則它處可導(dǎo)在點(diǎn)如果函數(shù),)(,)(),(xxxvxu).0)(()()()()()(])()([)3();()()()(])()([)2();()(])()([)1(2????????????
2025-04-21 03:39
【摘要】§數(shù)列極限第二章極限與連續(xù)本章是微積分的基礎(chǔ),主要討論函數(shù)的極限與函數(shù)的連續(xù)性。??,,,,,321naaaa稱為數(shù)列,記為na其中稱為數(shù)列的通項(xiàng)或一般項(xiàng);??na正整數(shù)n稱為的下標(biāo)。na例如:;,2,,8,4,2??n}2{n;,1,,1,1,1
2025-08-05 06:53
【摘要】;)()(任意小表示AxfAxf????.的過(guò)程表示???xXx.0sin)(,無(wú)限接近于無(wú)限增大時(shí)當(dāng)xxxfx?問(wèn)題:如何用數(shù)學(xué)語(yǔ)言刻劃函數(shù)“無(wú)限接近”.第二節(jié)函數(shù)極限的定義和性質(zhì)一、自變量趨向無(wú)窮大時(shí)函數(shù)的極限XX???A??Aoxy)(xfy?A定義1.設(shè)函數(shù)大于某一正數(shù)時(shí)有定義,若
2025-07-22 11:10
【摘要】一、概念的引入§2.數(shù)列的極限我們?cè)诰w論中講到:我們利用階梯形的面積來(lái)逼近曲邊三角形的面積(見下頁(yè)演示).硯恢陪楔灰橡妒豪棠淪講焰墩爽賭篡愈甸竅包舌客鞠秀萄象限慣矣例班掙微積分86751微積
2025-01-20 05:31
【摘要】回顧曲邊梯形求面積的問(wèn)題??badxxfA)(第八節(jié)定積分的幾何應(yīng)用曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成。abxyo)(xfy?abxyo)(xfy?提示若用A?表示任一小區(qū)間],[xx
2025-04-21 04:48
【摘要】周世國(guó):《微積分》(下)知識(shí)系統(tǒng)總結(jié)微積分(下)知識(shí)系統(tǒng)總結(jié)例1.求.【解】.【其中均是利用
2025-08-17 11:32
【摘要】備考基礎(chǔ)·查清熱點(diǎn)命題·悟通遷移應(yīng)用·練透課堂練通考點(diǎn)課下提升考能首頁(yè)上一頁(yè)下一頁(yè)末頁(yè)結(jié)束數(shù)學(xué)第十二節(jié)定積分與微積分基本定理1.定積分的概念第十二節(jié)定積分與微積分基本定理在????abf(x)dx中,
2024-11-23 12:12
【摘要】微積分基本定理(79)31、變速直線運(yùn)動(dòng)問(wèn)題變速直線運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv,求物體在這段時(shí)間內(nèi)所經(jīng)過(guò)的路程.另一方面這段路程可表示為)()(12TsTs?原函數(shù)存在
2024-12-08 00:51
【摘要】微積分初步輔導(dǎo)老師:劉丹鳳工作單位:岳陽(yáng)電大課程的性質(zhì)與任務(wù)《微積分初步》是計(jì)算機(jī)和數(shù)控專業(yè)的一門必修的重要基礎(chǔ)課程,通過(guò)本課程的學(xué)習(xí),使學(xué)生對(duì)一元函數(shù)微分、積分有初步認(rèn)識(shí)和了解,使學(xué)生初步掌握微積分的基本知識(shí)、基本理論和基本技能,并逐步培養(yǎng)學(xué)生邏輯推理能力、自學(xué)能力,較熟練的運(yùn)算能力和綜合運(yùn)用所學(xué)知識(shí)分析問(wèn)題、解決問(wèn)題的能力
2025-01-19 21:35