freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

重點中學(xué)八級下學(xué)期數(shù)學(xué)期末沖刺試卷兩套匯編九內(nèi)附答案解析(存儲版)

2025-02-06 23:25上一頁面

下一頁面
  

【正文】 據(jù)兩直線平行的問題得到 k=2,然后把(﹣ 2, 2)代入 y=2x+b可計算出 b的值. 【解答】解: ∵ 直線 y=kx+b與直線 y=2x+1平行, ∴ k=2, 把(﹣ 2, 2)代 入 y=2x+b得 2 (﹣ 2) +b=2,解得 b=6. 故答案為 6; 【點評】本題考查了兩條直線相交或平行問題:兩條直線的交點坐標(biāo),就是由這兩條直線相對應(yīng)的一次函數(shù)表達(dá)式所組成的二元一次方程組的解;若兩條直線是平行的關(guān)系,那么他們的自變量系數(shù)相同,即 k值相同. 9.如果一次函數(shù) y=( m﹣ 2) x+m的函數(shù)值 y隨 x的值增大而增大,那么 m 的取值范圍是 m> 2 . 【考點】一次函數(shù)圖象與系數(shù)的關(guān)系. 【分析】直接根據(jù)一次函數(shù)的增減性與系數(shù)的關(guān)系作答. 【解答】解: ∵ y隨 x的增大而增大, ∴ m﹣ 2> 0. 解得: m> 2, 故答案為: m> 2; 【點評】此題考查一次函數(shù)問題,關(guān)鍵是根據(jù)一次函數(shù)的增減性,來確定自變量系數(shù)的取值范圍. 第 10 頁(共 48 頁) 10.關(guān)于 x的方程 a2x+x=1 的解是 . 【考點】分式的混合運算;解一元一次方程. 【專題】計算題;分式;一次方程(組)及應(yīng)用. 【分析】方程合并后,將 x 系數(shù)化為 1,即可求出解. 【解答】解:方程合并得:( a2+1) x=1, 解得: x= , 故答案為: 【點評】此題考查了分式的混合運算,以及解一元一次方程,熟練掌握運算法則是解本題的關(guān)鍵. 11.方程 的解為 3 . 【考點】無理方程. 【分析】首先把方程兩邊分別平方,然后解一元二次方程即可求出 x的值. 【解答】解:兩邊平方得: 2x+3=x2 ∴ x2﹣ 2x﹣ 3=0, 解方程得: x1=3, x2=﹣ 1, 檢驗:當(dāng) x1=3時,方程的左邊 =右邊,所以 x1=3 為原方程的解, 當(dāng) x2=﹣ 1時,原方程的左邊 ≠ 右邊,所以 x2=﹣ 1不是原方程的解. 故答案為 3. 【點評】本題主要考查解無理方程,關(guān)鍵在于首先把方程的兩邊平方,注意最后要把 x 的值代入原方程進(jìn)行檢驗. 12.如圖,一次函數(shù) y=kx+b 的圖象 與 x 軸、 y 軸分別相交于 A、 B 兩點,那么當(dāng) y< 0 時,自變量 x的取值范圍是 x< 2 . 【考點】一次函數(shù)圖象上點的坐標(biāo)特征;一次函數(shù)的性質(zhì). 第 11 頁(共 48 頁) 【分析】直接根據(jù)直線與 x 軸的交點坐標(biāo)即可得出結(jié)論. 【解答】解: ∵ 由函數(shù)圖象可知,直線與 x軸的交點坐標(biāo)為( 2, 0), ∴ 當(dāng) y< 0是, x< 2. 故答案為: x< 2. 【點評】本題考查的是一次函數(shù)圖象上點的坐標(biāo)特點,能利用函數(shù)圖象直接得出 x 的取值范圍是解答此題的關(guān)鍵. 13. 2名男生和 2名女生抓鬮分派 2張電影票,恰好 2 名女生得到電影票的概率是 . 【考點】列表法與樹狀圖法. 【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好 2 名女生得到電影票的情況,再利用概率公式求解即可求得答案. 【解答】解:畫樹狀圖得: ∵ 共有 12種等可能的結(jié)果,恰好 2名女生得到電影票的有 2種情況, ∴ 恰好 2 名女生得到電影票的概率是: = . 故答案為: . 【點評】此題考查了列表法或樹狀圖法求概率的知識.注意此題屬于不放回實驗,用到的知識點為:概率 =所求情況數(shù)與總情況數(shù)之比. 14.如果一個八邊形的每一個內(nèi)角都相等,那么它的一個內(nèi)角的度數(shù)等于 135 度. 【考點】多邊形內(nèi)角與外角. 【分析】根據(jù) n 邊形的外角和為 360176。 ,求 CD的長; ( 2)求 y關(guān)于 x的函數(shù)解析式,并寫出自變量 x的取值范圍; ( 3 ) 聯(lián) 結(jié) BD . 如 果 △ BCD 是以邊 CD 為 腰 的 等 腰 三 角 形 , 求 x 的值. 第 5 頁(共 48 頁) 參考答案與試題解析 一、選擇題:(本大題共 6 題,每題 3分,滿分 18分)【下列各題的四個選項中,有且只有一個選項是正確的,請選擇正確選項的代號并填涂在答題紙的相應(yīng)位置上】 1.下列方程中,不是分式方程的是( ) A. B. C. D. 【考點】分式方程的定義. 【分析】判斷一個方程是否為分式方程主要是看這個方程的分母中是否含有未知數(shù). 【解答】解: A、該方程符合分式方程的定義,屬于分式方程,故本選項錯誤; B、該方程屬于無理方程,故本選項正確; C、該方程符合分式方程的定義,屬于分式方程,故本選項錯誤; D、該方程符合分式方程的定義,屬于分式方程,故本選項錯誤; 故選: B. 【點評】本題考查了分式方程的定義:分母中含有未知數(shù)的方程叫做分式方程. 2.函數(shù) y=﹣ 2x+3的圖象經(jīng)過( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限 【考點】一次函數(shù)的性質(zhì). 【專題】探究型. 【分析】直接根據(jù)一次函數(shù)的性質(zhì)進(jìn)行解答即可. 【解答】解: ∵ 一次函數(shù) y=﹣ 2x+3中, k=﹣ 2< 0, b=3> 0, ∴ 此函數(shù)的圖象經(jīng)過一、二、四象限. 故選 B. 【點評】本題考查的是一次函數(shù)的性質(zhì),熟知一次函數(shù) y=kx+b( k≠ 0)中,當(dāng) k< 0, b> 0 時函數(shù)圖象經(jīng)過一、二、四象限是解答此題的關(guān)鍵. 3.如果點 C是線段 AB的中點,那么下列結(jié)論中正確的是( ) 第 6 頁(共 48 頁) A. B. C. D. 【考點】 *平面向量. 【專題】計算題. 【分析】根 據(jù)點 C是線段 AB 的中點,可以判斷 | |=| |,但它們的方向相反,繼而即可得出答案. 【解答】解:由題意得: | |=| |,且它們的方向相反, ∴ 有 = , 故選 C. 【點評】本題考查了平面向量的知識,注意向量包括長度及方向,及 0與 的不同. 4.小杰兩手中僅有一只手中有硬幣,他讓小敏猜哪只手中有硬幣.下列說法正確的是( ) A.第一次猜中的概率與重放后第二次猜中的概率不一樣 B.第一次猜不中后,小杰重放后再猜 1次肯定能猜中 C.第一次猜中后,小杰重放后再猜 1次肯定猜不中 D.每次猜中的概率都是 【考點】列表法與樹狀圖法;概率公式. 【分析】首先直接利用概率公式求得第一次猜中的概率; 首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得等可能的結(jié)果與第二次猜中的情況,再利用概率公式即可求得答案. 【解答】解: ∵ 第一次猜中的概率為: ; 畫樹狀圖得: ∵ 共有 4 種等可能的結(jié)果,重放后第二次猜中的有 2種情況, ∴ 第二次猜中的概率為: . ∴ 每次猜中的概率都是 . 故選 D. 【點評】此題考查了樹狀圖法與列表法求概率.用到的知識點為:概率 =所求情況數(shù)與總情況數(shù)之比. 第 7 頁(共 48 頁) 5.如圖,在梯形 ABCD中, AB∥ CD, AD=DC=CB, AC⊥ BC,那么下列結(jié)論不正確的是( ) A. AC=2CD B. DB⊥ AD C. ∠ ABC=60176。 ,那么 ∠ B= 度. 16.如圖,在 △ ABC中,點 D、 E分別是邊 AB、 AC的中點,已知 DE=6cm,則 BC= cm. 17.在梯形 ABCD中, AD∥ BC, AB=CD, AC⊥ BD.如果 AD=4, BC=10,那么梯形 ABCD的面積等于 . 18.如圖,在 △ ABC中, AB=AC,點 M、 N分別在邊 AB、 AC上,且 MN⊥ AC.將四邊形 BCNM沿直線 MN翻折,點 B、 C的對應(yīng)點分別是點 B′ 、 C′ ,如果四邊形 ABB′C′ 是平行四邊形,那么 ∠ BAC= 度. 第 3 頁(共 48 頁) 三、計算題(本大題共 8題,滿分 58分) 19.解方程: . 20.解方程組: . 21.已知:如圖,在 △ ABC 中,設(shè) , . ( 1)填空: = ;(用 、 的式子表示) ( 2)在圖中求作 . (不要求寫出作法,只需寫出結(jié)論即可.) 22.已知直線 y=kx+b經(jīng)過點 A(﹣ 3,﹣ 8),且與直線 的公共點 B的橫坐標(biāo)為 6. ( 1)求直線 y=kx+b的表達(dá)式; ( 2)設(shè)直線 y=kx+b與 y軸的公共點為點 C,求 △ BOC 的面積. 23.已知:如圖,在正方形 ABCD中,點 E在邊 BC上,點 F在邊 CD 的延長線上,且 BE=DF. ( 1)求 ∠ AEF的度數(shù); ( 2)如果 ∠ AEB=75176。 , ∵ DC=CB, ∴∠ CDB=∠ CBD=∠ ABD, ∵∠ ACB=90176。 ﹣ 45176。=135176。 . 故答案為: 110. 【點評】此題主要考查了平行四邊形的性質(zhì),靈活的應(yīng)用平行四邊形的性質(zhì)是解決問題的關(guān)鍵. 16.如圖,在 △ ABC中,點 D、 E分別是邊 AB、 AC的中點,已知 DE=6cm,則 BC= 12 cm. 【考點】三角形中位線定理. 【分析】三角形的中位線等于第三邊的一半,那么第三邊應(yīng)等于中位線長的 2倍. 【解答】解: ∵△ ABC中,點 D、 E分別是邊 AB、 AC 的中點, ∴ DE是 △ ABC的中位線, ∵ DE=6cm, ∴ BC=2DE=2 6=12cm. 故答案為 12. 【點評】本題考查了三角形的中位線的性質(zhì):三角形的中位線等于第三邊的一半. 17.在梯形 ABCD中, AD∥ BC, AB=CD, AC⊥ BD.如果 AD=4, BC=10,那么梯形 ABCD的面積等于 49 . 【考點】梯形. 第 13 頁(共 48 頁) 【分析】首過 D作 DE∥ AC交 BC的延長線于 E,過 D作 DF⊥ BC于 F,先求出 △ BDEE是等腰直角三角形推出 DFF與 BE 的關(guān)系,進(jìn)而根據(jù)梯形的面積公式即可求解. 【解答】解:過 D作 DE∥ AC 交 BC 的延長線于 E,過 D作 DF⊥ BC于 F. ∵ AD∥ CB, DE∥ AC, ∴ 四邊形 ADEC是平行四邊形, ∴ DE=AC, AD=CE=4 ∵ 等腰梯形 ABCD中, AB=CD, ∴ DE=AC=BD, ∵ AC⊥ BD, CE∥ AD, ∴ DE⊥ BD, ∴△ BDE是等腰直角三角形, 又 ∵ AD=4, BC=10, ∴ DF= BE= ( AD+BC) = ( 4+10) =7, ∴ 梯形的面積為: ( 4+10) 7=49. 故答案為: 49. 【點評】本題考查等腰梯形的性質(zhì),難度不大,注意在解題的過程中運算平行線的性質(zhì),另外要掌握等腰梯形的面積還等于對角線互相兩條對角線乘積的一半. 18.如圖,在 △ ABC中, AB=AC,點 M、 N分別在邊 AB、 AC上,且 MN⊥ AC.將四邊形 BCNM沿直線 MN翻折,點 B、 C 的對應(yīng)點分別是點 B′ 、 C′ ,如果四邊形 ABB′C′ 是平行四邊形,那么 ∠ BAC= 60 度. 第 14 頁(共 48 頁) 【考點】平行四邊形的性質(zhì);等腰三角形的性質(zhì). 【分析】只要證明 △ ABC是等邊三角形即可解決問題. 【解答】解:如圖, ∵ 四邊形 MNC′B′ 是由四邊形 MNCB翻折得到, ∴∠ C=∠ C′ , ∵ AB∥ B′C′ , ∴∠ C′= ∠ BAC, ∴∠ C=∠ BAC, ∴ AB=BC, ∵ AB=AC, ∴ AB=AC=BC, ∴∠ BAC=60176。 , ∠ AEF=45176。 ,根據(jù)平行四邊形對邊平行可得 AB∥ CD,利用平行線的性質(zhì)可得 ∠ CEF=∠ BAF=90176。 . 又 ∵ DF=CF, ∴ CD=2EF=x+y. 由 AB⊥ BC, DH⊥ BC,得 ∠ B=∠ DHC=90176。 多邊形的邊數(shù)是 n, 則( n﹣ 2) ?180176。 ,再根據(jù)翻折的性質(zhì)即可得出 ∠ ADF=∠ EDF=45176。 ﹣ ∠ BDC=135176。 , ∵ Rt△ OCF中, CF=BD=2OC, ∴∠ OFC=30176。 60= (元) 即:超時費每分鐘是 . ( 2)當(dāng) 0≤ x≤ 25時, y1=7. 當(dāng) x> 25時,設(shè) y1 與 x之間的關(guān)系式: y1=kx+b 其中, k=,當(dāng) x=25時 y1=7 即: 7= 25+b 解
點擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1