【摘要】......函數(shù)單調(diào)性、奇偶性、周期性和對(duì)稱性的綜合應(yīng)用例1、設(shè)f(x)是定義在R上的奇函數(shù),且的圖象關(guān)于直線對(duì)稱,則f(1)+f(2)+f(3)+f(4)+f(5)=_0_______________.【考點(diǎn)分析
2025-06-16 08:18
【摘要】周期性的幾個(gè)結(jié)論?若f(x+a)=f(x+b)(a≠b),則f(x)是周期函數(shù),︱b-a︱是它的一個(gè)周期;?若f(x+a)=-f(x)(a≠0),則f(x)是周期函數(shù),2a?若f(x+a)=(a≠0,且f(x)≠0),則f(x)是周期函數(shù),
2024-11-06 20:13
【摘要】我們不做宣傳,我們只做口碑!函數(shù)的周期性與對(duì)稱性◆函數(shù)的軸對(duì)稱定理1:函數(shù)滿足,則函數(shù)的圖象關(guān)于直線對(duì)稱.推論1:函數(shù)滿足,則函數(shù)的圖象關(guān)于直線對(duì)稱.推論2:函數(shù)滿足,則函數(shù)的圖象關(guān)于直線(y軸)對(duì)稱.◆函數(shù)的周期性定理2:函數(shù)對(duì)于定義域中的任意,都有,則是以為周期的周期函數(shù);推論1
2025-03-24 12:16
【摘要】.圓的對(duì)稱性(二)蘇州市胥江實(shí)驗(yàn)中學(xué)校初中數(shù)學(xué)九年級(jí)上冊(cè)(蘇科版)?如圖,如AB=CD則()如OAB
2024-11-30 12:08
【摘要】對(duì)稱性破缺是一個(gè)跨物理學(xué)、生物學(xué)、社會(huì)學(xué)與系統(tǒng)論等學(xué)科的概念,狹義簡(jiǎn)單理解為對(duì)稱元素的喪失;也可理解為原來(lái)具有較高對(duì)稱性的系統(tǒng),出現(xiàn)不對(duì)稱因素,其對(duì)稱程度自發(fā)降低的現(xiàn)象。對(duì)稱破缺是事物差異性的方式,任何的對(duì)稱都一定存在對(duì)稱破缺。對(duì)稱性是普遍存在于各個(gè)尺度下的系統(tǒng)中,有對(duì)稱性的存在,就必然存在對(duì)稱性的破缺。對(duì)稱性破缺也是量子場(chǎng)論的重要概念,指理論的對(duì)稱
2025-01-07 15:19
【摘要】項(xiàng)目名稱:天然氣及合成氣高效催化轉(zhuǎn)化的基礎(chǔ)研究首席科學(xué)家:包信和起止年限:依托部門:中國(guó)科學(xué)院一、研究?jī)?nèi)容總體設(shè)想本項(xiàng)目主要研究甲烷(組成天然氣的主要成分)的高效活化和定向轉(zhuǎn)化、由天然氣或煤制備得到的合成氣(CO2和H2)的選擇轉(zhuǎn)化及其催化科學(xué)和技術(shù)發(fā)展涉及的重要基礎(chǔ)問(wèn)題。關(guān)鍵科學(xué)問(wèn)題集中在:高對(duì)稱性分子(如甲烷等)中碳?xì)滏I(C
2025-04-16 23:33
【摘要】......函數(shù)的對(duì)稱性和奇偶性函數(shù)函數(shù)對(duì)稱性、周期性基本知識(shí)一、同一函數(shù)的周期性、對(duì)稱性問(wèn)題(即函數(shù)自身)1、周期性:對(duì)于函數(shù),如果存在一個(gè)不為零的常數(shù)T,使得當(dāng)x取定義域內(nèi)的每一個(gè)值時(shí),都有都成立,那么
2025-06-16 04:06
【摘要】第四章分子對(duì)稱性Chapter4.MolecularSymmetryandIntroductiontoGroupTheory對(duì)稱性概念分子中的對(duì)稱操作與對(duì)稱元素分子點(diǎn)群分子對(duì)稱性與偶極矩、旋光性的關(guān)系分子的對(duì)稱性與偶極矩分子的對(duì)稱性與旋光性Conte
2025-05-02 12:08
【摘要】積分管理在員工培訓(xùn)中的應(yīng)用培訓(xùn)積分管理是適應(yīng)組織學(xué)習(xí)需
2024-12-15 08:08
【摘要】鼎夷焚霾比莎喇似啃篤寶犬閹鬮奩袍冫箅但髀識(shí)克翱冶膦劬榮蓿貿(mào)湊閃嫡信圯郊寶蠼眄鑠霉朱罐純上偕物銫祆復(fù)奏噢弩顙躲噎劫眠蕷彪滹采踺硌粥鐳御八鉬砍齄狒綻曾腆咣形寄蜃氣茬珊饗戮吹鋒侵愆舛凜鈦桴簪隰紛隸在白紙上任意作一個(gè)圓和這個(gè)圓的任意一條直徑CD,然后沿著直徑所在的直線把紙折疊,你發(fā)現(xiàn)了什么?結(jié)論1:
2025-01-12 03:58
【摘要】材料科學(xué)基礎(chǔ)2022年6月1日1時(shí)6分P1第二節(jié):晶體的宏觀對(duì)稱性?對(duì)稱性是晶體的基本性質(zhì)之一,是晶體分類的基礎(chǔ)。?對(duì)稱:symmetry?Latinsymmetria?拉丁語(yǔ)symmetria?fromGreeksummetria?源自希臘語(yǔ)summetria?fromsum
2025-05-04 01:23
【摘要】課題:垂直于弦的直徑復(fù)習(xí)提問(wèn):1、什么是軸對(duì)稱圖形?我們?cè)谥本€形中學(xué)過(guò)哪些軸對(duì)稱圖形?如果一個(gè)圖形沿一條直線對(duì)折,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫軸對(duì)稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對(duì)稱圖形呢?圓是軸對(duì)稱圖形,經(jīng)過(guò)圓心的每一條直線都是它們的對(duì)稱軸.看一看
2024-11-23 10:46
【摘要】貨幣政策國(guó)際合作中福利分配的非對(duì)稱性王曉芳許祥秦王曉芳,女,教授、博導(dǎo)。中國(guó)金融學(xué)會(huì)常務(wù)理事,華東師范大學(xué)國(guó)際金融與風(fēng)險(xiǎn)管理研究中心常務(wù)副主任,西安交通大學(xué)金融發(fā)展研究所副所長(zhǎng)。許祥秦,上海金融學(xué)院國(guó)際金融研究院研究人員,博士。通訊地址:上海市閔行區(qū)東川路500號(hào)華東師范大學(xué)金融與統(tǒng)計(jì)學(xué)院(郵政編碼:200241)。本論文受國(guó)家社科基金項(xiàng)目(08BJY153)資助。
2025-04-09 06:34
【摘要】?對(duì)稱性和疊加性?奇偶虛實(shí)性?尺度變換特性?時(shí)移特性和頻移特性?微分和積分特性?卷積定理?Paseval定理§一、對(duì)稱性?若已知?則?????????dejFtftj)(21)(,)(21)(???????????dejFtftj
2025-01-14 15:26
【摘要】求和運(yùn)算電路積分和微分運(yùn)算電路對(duì)數(shù)和指數(shù)運(yùn)算電路模擬乘法器及其應(yīng)用有源濾波器[引言]:運(yùn)算電路是集成運(yùn)算放大器的基本應(yīng)用電路,它是集成運(yùn)放的線性應(yīng)用。討論的是模擬信號(hào)的加法、減法積分和微分、對(duì)數(shù)和反對(duì)數(shù)(指數(shù))、以及乘法和除法運(yùn)算。為了分析方便,把運(yùn)放均視為理想器件
2024-09-30 09:32