【摘要】第二章圓一石激起千層浪奧運五環(huán)樂在其中如圖是國際奧林匹克運動會旗的標志圖案.圓是到一定點的距離等于定長的所有點組成的圖形.·定長叫作半徑.這個定點叫作圓心.OA·OA圓也可以看成是一個動點繞一個定點旋轉(zhuǎn)一周所形成的圖形,定點叫作圓心
2024-11-25 21:58
【摘要】猜一猜請同學們觀察屏幕上兩個半徑相等的圓。請回答:它們能重合嗎?如果能重合,請將它們的圓心固定在一起。O,然后將其中一個圓旋轉(zhuǎn)任意一個角度,這時兩個圓還重合嗎?O歸納:圓具有旋轉(zhuǎn)不變性,即一個圓繞著它的圓心旋轉(zhuǎn)任意一個角度,都能與原來的圓重合。因此,圓是中心對稱圓形,對稱中心為圓心。圓
2024-11-30 08:37
【摘要】.圓的對稱性(2)復(fù)習如圖,若AB=CD則()若OABCD⌒⌒AB=
2024-12-08 02:56
【摘要】九年級數(shù)學(上)第四章:對圓的進一步認識-垂徑定理圓的對稱性?圓是軸對稱圖形嗎?想一想1駛向勝利的彼岸如果是,它的對稱軸是什么?你能找到多少條對稱軸?●O你是用什么方法解決上述問題的??圓是中心對稱圖形嗎?如果是,它的對稱中心是什么?你能找到多少條對稱軸?你又是用什
2024-12-08 09:59
【摘要】第2課時圓的元素之間的關(guān)系1.圓是中心對稱圖形中心對稱圓心重合(1)圓是__________圖形,對稱中心為______.(2)圓的旋轉(zhuǎn)不變性:圓具有旋轉(zhuǎn)不變的特性.即一個圓繞著它的圓心旋轉(zhuǎn)任意一個角度,都能與原來的圖形______.圓的中心對稱性是其旋轉(zhuǎn)不變性的特例.2.圓心角、弧、弦、弦
2024-11-18 19:07
【摘要】周期性的幾個結(jié)論?若f(x+a)=f(x+b)(a≠b),則f(x)是周期函數(shù),︱b-a︱是它的一個周期;?若f(x+a)=-f(x)(a≠0),則f(x)是周期函數(shù),2a?若f(x+a)=(a≠0,且f(x)≠0),則f(x)是周期函數(shù),
2024-11-06 20:13
【摘要】第三章分子對稱性和點群分子具有某種對稱性.它對于理解和應(yīng)用分子量子態(tài)及相關(guān)光譜有極大幫助.確定光譜的選擇定則需要用到對稱性.標記分子的量子態(tài)需要用到對稱性.對稱元素對稱性是指分子具有兩個或更多的在空間不可區(qū)分的圖象.把等價原子進行交換的操作叫做對稱操作.對稱操作依賴的幾何集合(點,
2025-05-06 08:13
【摘要】ABCDOFEG圓心角、弧、弦、弦心距之間的關(guān)系圓心角、弧、弦、弦心距之間的關(guān)系圓是中心對稱圖形O對稱中心為圓心我們已經(jīng)學過的圖形中,有哪些既是軸對稱圖形,又是中心對稱圖形?圓是軸對稱圖形對稱軸是任意一條過圓心的直線圓心角、弧、弦、弦心距之間的關(guān)系
2024-11-30 02:41
【摘要】圓的對稱性第三章圓圓是軸對稱圖形嗎?對稱軸是什么?你怎么來驗證?圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓有無數(shù)條對稱軸。O圓是中心對稱圖形嗎?它的對稱中心在哪里?·圓是中心對稱圖形,它的對稱中心是圓心.思考ABCDO∠AOB∠COD
2024-12-08 04:46
【摘要】ABCO例1、如圖,AB是⊙O的一條弦,OC⊥AB于點C,OA=5,AB=8。求OC的長。請抄筆記ABCOABCDO例2、如圖,AB是⊙O的一條弦,點C為弦AB的中點,OC=3,AB=8,求OA的長。例3、如圖,兩個圓都以點O為圓心,小圓的弦CD與大圓
【摘要】對稱性制作人:王云松初中數(shù)學資源網(wǎng).OAB圓繞圓心旋轉(zhuǎn)?初中數(shù)學資源網(wǎng)圓繞圓心旋轉(zhuǎn)?初中數(shù)學資源網(wǎng)圓繞圓心旋轉(zhuǎn)?初中數(shù)學資源網(wǎng)圓繞圓心旋轉(zhuǎn)?初中數(shù)學資源網(wǎng)圓繞圓心旋轉(zhuǎn)?初中數(shù)學資源網(wǎng)
2024-11-12 00:07
【摘要】..圓的對稱性【典型例題】?例1.如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點D、E。求AB、AD的長。分析:求AB較簡單,求弦長AD可先求AF。解:例2.如圖,⊙O中,弦AB=10cm,P是弦AB上一點,且PA=4cm,OP=5
2025-08-05 04:44
【摘要】.圖1圖2九年級數(shù)學圓的對稱性(1)教學案學習目標:1、會利用圓的軸對稱性探究垂徑定理、證明垂徑定理;2、能利用垂徑定理進行相關(guān)的計算和證明;3、掌握垂徑定理的推論。學習重點:垂徑定理的證明與簡單應(yīng)用;學習難點:垂徑定理的證明及其簡單應(yīng)用。學習過程:一、復(fù)習提問:1、什么是軸對稱
2024-12-09 03:54
【摘要】1高等無機化學2BartRosenberg,.1926-順鉑發(fā)現(xiàn)者Inrecognitionofhisoutstandingcontributiontomedicalresearchthroughhispioneer
2025-04-29 01:01
【摘要】線段、角的對稱性(1)在一張薄紙上畫一條線段AB,操作并思考:線段是軸對稱圖形嗎?做一做BA線段是軸對稱圖形,它的對稱軸在哪里?為什么?想一想BA線段是軸對稱圖形,線段的垂直平分線是它的對稱軸.O21lBA線段、角的對稱性(1)21lPOBA想一想1.
2024-11-24 21:05