【摘要】第三節(jié)晶體的對稱性和分類本節(jié)主要內(nèi)容:一、晶體的宏觀對稱性和宏觀對稱操作二、晶體的微觀對稱性和微觀對稱操作三、群和晶體結構的分類物體的性質(zhì)在不同方向或位置上有規(guī)律地重復出現(xiàn)的現(xiàn)象稱為對稱性對稱性的本質(zhì)是指系統(tǒng)中的一些要素是等價的,它可使復雜物理現(xiàn)象的描述變得簡單、明了。因為對稱性越高的系統(tǒng),需要獨立表征的系
2025-04-29 12:01
【摘要】第三章分子的對稱性和點群第一節(jié)分子的對稱性一對稱操作和對稱元素對稱操作:如果對分子圖形進行某種操作后,不改變其中任何兩點間距離,仍能得到分子的等價圖形,并經(jīng)過數(shù)次操作后使分子圖形完全復原的操作。對稱元素:進行對稱操作所憑借的幾何要素(點、線、面等)。(一)分子的對稱操作種類1旋轉
2025-05-13 11:44
【摘要】圓的對稱性(一)班級姓名學號學習目標1.經(jīng)歷探索圓的對稱性(中心對稱)及有關性質(zhì)的過程.2.理解圓的對稱性及有關性質(zhì).3.會運用圓心角、弧、弦之間的關系解決有關問題.學習重點:中心對稱性及相關性質(zhì).學習難點:運用圓心角、弧、弦之間的關系解決
2024-11-19 21:13
【摘要】··fv0m力心證明:在有心力場作用下,質(zhì)點必在同一平面內(nèi)運動。Q1Q2求均勻帶電球面球心的電場強度(電場強度是矢量)1對稱性原理(principleofsymmetry)一.基本概念二.基本操作與對稱性的分類三.對稱性原理四.對稱性與守恒定律對稱性的規(guī)律具有極大的
2025-04-29 00:14
【摘要】材料科學基礎2022年6月1日1時6分P1第二節(jié):晶體的宏觀對稱性?對稱性是晶體的基本性質(zhì)之一,是晶體分類的基礎。?對稱:symmetry?Latinsymmetria?拉丁語symmetria?fromGreeksummetria?源自希臘語summetria?fromsum
2025-05-04 01:23
【摘要】?對稱性和疊加性?奇偶虛實性?尺度變換特性?時移特性和頻移特性?微分和積分特性?卷積定理?Paseval定理§一、對稱性?若已知?則?????????dejFtftj)(21)(,)(21)(???????????dejFtftj
2025-01-14 15:26
【摘要】第2課時圓的元素之間的關系1.圓是中心對稱圖形中心對稱圓心重合(1)圓是__________圖形,對稱中心為______.(2)圓的旋轉不變性:圓具有旋轉不變的特性.即一個圓繞著它的圓心旋轉任意一個角度,都能與原來的圖形______.圓的中心對稱性是其旋轉不變性的特例.2.圓心角、弧、弦、弦
2024-11-18 19:07
【摘要】周期性的幾個結論?若f(x+a)=f(x+b)(a≠b),則f(x)是周期函數(shù),︱b-a︱是它的一個周期;?若f(x+a)=-f(x)(a≠0),則f(x)是周期函數(shù),2a?若f(x+a)=(a≠0,且f(x)≠0),則f(x)是周期函數(shù),
2024-11-06 20:13
【摘要】ABCDOFEG圓心角、弧、弦、弦心距之間的關系圓心角、弧、弦、弦心距之間的關系圓是中心對稱圖形O對稱中心為圓心我們已經(jīng)學過的圖形中,有哪些既是軸對稱圖形,又是中心對稱圖形?圓是軸對稱圖形對稱軸是任意一條過圓心的直線圓心角、弧、弦、弦心距之間的關系
2024-11-30 02:41
【摘要】第2章對稱圖形——圓圓的對稱性第2課時圓的軸對稱性與垂徑定理知識目標目標突破第2章對稱圖形——圓總結反思知識目標第2課時圓的軸對稱性與垂徑定理1.通過回顧軸對稱圖形的概念,了解圓是軸對稱圖形.2.通過探索圓的軸對稱性,掌握并應用垂徑定理求線段的長度.3.通過
2025-06-18 06:53
【摘要】圓的對稱性第三章圓圓是軸對稱圖形嗎?對稱軸是什么?你怎么來驗證?圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓有無數(shù)條對稱軸。O圓是中心對稱圖形嗎?它的對稱中心在哪里?·圓是中心對稱圖形,它的對稱中心是圓心.思考ABCDO∠AOB∠COD
2024-12-08 04:46
【摘要】晶體的宏觀對稱對稱的概念對稱就是物體相同部分有規(guī)律的重復。對稱性在日常生活中很常見,但對稱的概念還有更深邃和更廣泛的含義:變換中的不變性;建造大自然的密碼;審美要素。對稱的概念還在不斷被科學賦予新意。自然界中的對稱性隨處可見,對稱是自然界固有的一種屬性。下面給出具有幾何對稱性的一些例子。某個平面圖形具
2025-05-12 03:43
【摘要】教學目標:1.知識與技能:圓的旋轉不變性,圓心角、弧、弦之間相等關系定理.2.過程與方法:通過觀察、比較、操作、推理、歸納等活動發(fā)展空間觀念、推理能力以及概括問題的能力,利用圓的旋轉不變性,研究圓心角、弧、弦之間相等關系定理.3.情感態(tài)度與價值觀:培養(yǎng)學生積極探索數(shù)學問題的態(tài)度及方法.教學重點:圓心角、弧、弦之間關系定理教學
2024-12-01 04:14
【摘要】第四章分子對稱性與群論初步對稱性普遍存在于自然界如:花瓣、蝴蝶、人體、各種建筑、甚至優(yōu)美的樂章都有對稱性,有的存在對稱軸、有的存在對稱面。對稱性的研究在化學中有廣泛的應用,如:分子立體構型原子軌道的雜化,以及幾乎所有的電子光譜定律都是對對稱性的研究得出的。由于課時和課程性質(zhì)所限,我們只對基本知識作基本介紹詳細的數(shù)學推導不深入涉及,力求實用,某些
2025-04-28 23:37
【摘要】圓的對稱性教學目標:(1)知識與能力:通過本課的學習,學生在知識上要了解圓的對稱性及垂徑定理,在能力上要學會從表象中抽象出本質(zhì)規(guī)律,提高邏輯思維能力與推理能力。(2)過程與方法:在教學過程中,要讓學生親自動手去做去體會,并讓他們相互交流,然后根據(jù)實際情況加以啟發(fā),引導讓他們自己去總結出規(guī)律。(3)情感、態(tài)度與價值觀:A、本課
2024-11-19 08:37