【摘要】一、一個方程的情形二、方程組的情形三、小結(jié)思考題第五節(jié)隱函數(shù)的求導(dǎo)公式0),(.1?yxF一、一個方程的情形隱函數(shù)存在定理1設(shè)函數(shù)),(yxF在點(diǎn)),(00yxP的某一鄰域內(nèi)具有連續(xù)的偏導(dǎo)數(shù),且0),(00?yxF,0),(00?yxFy,則方程0),(?yxF在點(diǎn)),
2025-08-11 16:41
【摘要】第六節(jié)無窮小的比較一、無窮小的比較例如,xxx3lim20?xxxsinlim0?20sinlimxxx?.sin,,,02都是無窮小時當(dāng)xxxx?極限不同,反映了趨向于零的“快慢”程度不同.;32要快得多比xx;sin大致相同與xx,0?,
2025-08-21 12:40
【摘要】第六節(jié)經(jīng)濟(jì)學(xué)中的常用函數(shù)一、需求函數(shù)如果價格是決定需求量的最主要因素,可以認(rèn)為Q是P的函數(shù)。記作)(PfQ?則f稱為需求函數(shù).需求的含義:消費(fèi)者在某一特定的時期內(nèi),在一定的價格條件下對某種商品具有購買力的需要.,bPaQ??線性需求函數(shù):常見的需求函數(shù):2cPbPaQ???二次
2025-08-11 11:12
【摘要】一、差分方程的簡單經(jīng)濟(jì)應(yīng)用二、小結(jié)第九節(jié)差分方程的簡單經(jīng)濟(jì)應(yīng)用一、差分方程的簡單經(jīng)濟(jì)應(yīng)用差分方程在經(jīng)濟(jì)領(lǐng)域的應(yīng)用十分廣泛,下面從具體的實(shí)例體會其應(yīng)用的場合和應(yīng)用的方法.??.01本利和年末的,求,且初始存款額為設(shè)為年利率,年存款總額,為設(shè)存款模型例一:tSrSSSrtStttt???解tttr
2025-08-21 12:41
【摘要】《微積分基本定理》教案[來源:中國%@^教*育~出版網(wǎng)]一、教學(xué)目標(biāo)[中@*國&教^育出版#網(wǎng)]通過實(shí)例,直觀了解微積分基本定理的含義,會用牛頓-萊布尼茲公式求簡單的定積分二、教學(xué)重難點(diǎn)重點(diǎn)通過探究變速直線運(yùn)動物體的速度與位移的關(guān)系,使學(xué)生直觀了解微積分基本定理的含義,并能正確運(yùn)用基本定理計算簡單的
2024-12-07 21:43
【摘要】微積分基本定理變速直線運(yùn)動中位移函數(shù)與速度函數(shù)的聯(lián)系一方面,變速直線運(yùn)動中位移為?21)(TTdttv設(shè)某物體作直線運(yùn)動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),求物體在這段時間內(nèi)所經(jīng)過的位移.另一方面,這段位移可表示為)()(12TsTs?
2025-07-25 15:39
【摘要】一、問題的提出二、二重積分的概念三、二重積分的性質(zhì)四、小結(jié)思考題第一節(jié)二重積分的概念與性質(zhì)柱體(cylindricalbody)體積=底面積×高特點(diǎn):平頂.曲頂柱體體積=?特點(diǎn):曲頂(curvedvertexsurface).),(yxfz?D1.曲頂柱體的體積
2025-08-21 12:46
【摘要】三、多元函數(shù)的極限二、多元函數(shù)的概念四、多元函數(shù)的連續(xù)性五、小結(jié)思考題第一節(jié)多元函數(shù)的基本概念一、區(qū)域設(shè)),(000yxP是xoy平面上的一個點(diǎn),?是某一正數(shù),與點(diǎn)),(000yxP距離小于?的點(diǎn)),(yxP的全體,稱為點(diǎn)0P的?鄰域,記為),(
2025-08-21 12:43
【摘要】一、可分離變量的微分方程二、齊次方程四、變量代換法解方程第二節(jié)一階微分方程三、一階線性微分方程五、小結(jié)與思考題一、可分離變量的微分方程()d()dgyyfxx?可分離變量的微分方程.425d2dyxyx?例如425d2d,yyxx???解法設(shè)函數(shù))(
【摘要】第一節(jié)空間直角坐標(biāo)系一、空間點(diǎn)的直角坐標(biāo)二、空間兩點(diǎn)間的距離四、小結(jié)思考題三、n維空間x橫軸y縱軸z豎軸?原點(diǎn)o空間直角坐標(biāo)系三條坐標(biāo)軸的正方向符合右手法則.即以右手握住z軸,當(dāng)右手的四個手指從x軸正向以2?角度轉(zhuǎn)向正向y軸時,大
2025-08-21 12:37
【摘要】一、多元復(fù)合函數(shù)求導(dǎo)法則二、小結(jié)思考題第四節(jié)多元復(fù)合函數(shù)的求導(dǎo)法則一、多元復(fù)合函數(shù)的求導(dǎo)法則在一元函數(shù)微分學(xué)中,復(fù)合函數(shù)的求導(dǎo)法則起著重要的作用.現(xiàn)在我們把它推廣到多元復(fù)合函數(shù)的情形.下面按照多元復(fù)合函數(shù)不同的復(fù)合情形,分三種情況進(jìn)行討論.定理1如果函數(shù))(tu?
【摘要】主要內(nèi)容典型例題第三章導(dǎo)數(shù)與微分習(xí)題課求導(dǎo)法則基本公式導(dǎo)數(shù)xyx????0lim微分dyyx???關(guān)系ddddd()yyyyxyyoxx??????????高階導(dǎo)數(shù)一、
2025-08-21 12:42
【摘要】易懂易學(xué)的微積分李尚志北京航空航天大學(xué)微積分基本概念什么是勻速運(yùn)動??A:速度不變?B:路程與時間成正比?A?什么是速度??B?Ds=kDt,常數(shù)k=速度微積分基本概念(一)微分和導(dǎo)數(shù)變速運(yùn)動
2025-04-30 18:13
【摘要】微積分學(xué)基本定理與定積分的計算暝歡梅裟贐潿咚妞耐浩徙羸倆橋瓣嫣蛙乩浜囹眇嚷陲牌攪殉蹩瞿尕莰宗乒辱玲鏍伎雒霖科返測捷蛘錙張入痖儲琳憒.)()(???babadttfdxxf且存在則有定積分上可積在若?badxxfbaf)(,],[因而有上可積在,],[xaf存在],[bax???xadt
2024-10-19 18:07
【摘要】abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11