【摘要】習(xí)題一一、單項(xiàng)選擇題.1.微分方程的階數(shù)是().A.1B.2C.3D.52.克萊羅方程的一般形式是().A.B.C.D.3.下列方程中為全微分方程的是().A.B.C.
2025-03-25 01:12
【摘要】第十二章常微分方程(A)一、是非題1.任意微分方程都有通解。()2.微分方程的通解中包含了它所有的解。()3.函數(shù)是微分方程的解。()4.函數(shù)是微分方程的解。()5.微分方程的通解是(為任意常數(shù))。()6.是一階線性微分方程。()7.不是一階線性微分方程。()8.的特征方程為。()
2025-06-07 18:55
【摘要】2.求解下列常系數(shù)線性微分方程:(1)解:特征方程:特征根:基本解組:所求通解:(2)解:特征方程:特征根:基本解組:所求通解:(3)解:特征方程:特征根:基本解組:所求通解:(4)解:特征方程:特征根:基本解組:所求通解:(5)(屬于類型Ⅰ)解:齊次方程:特征方程:
2025-06-26 20:31
【摘要】宿州學(xué)院畢業(yè)論文常微分方程的邊值問題與不動點(diǎn)定理目錄引言 11預(yù)備知識 2(奇異Sturm-Liouville邊值問題的正解) 2 2(凸集的概念) 2 3(全連續(xù)算子的概念) 3(常微分邊值問題的定義) 3) 42常微分方程邊值問題正解得存在性 4奇異Stur
2025-06-24 15:00
【摘要】常微分方程論文學(xué)院:數(shù)學(xué)科學(xué)學(xué)院班級:12級統(tǒng)計(jì)班指導(dǎo)教師:宋旭霞小組成員:張維萍付佳奇張韋麗張萍
2025-06-03 12:01
【摘要】《常微分方程》教學(xué)大綱一、?計(jì)劃學(xué)時:72課時二、?適用專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)(師范類)(本、專科)、信息與計(jì)算科學(xué)(本)三、???課程性質(zhì)與任務(wù):常微分方程是高等師范院校數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)及信息與計(jì)算專業(yè)的基礎(chǔ)課之一。本課程主要學(xué)習(xí)各種基本類型的常微分方程解的性質(zhì)、方程的解法及其某些應(yīng)用。通過該課程的學(xué)習(xí),使學(xué)生正確理解常微分
2025-04-16 23:04
【摘要】數(shù)學(xué)與計(jì)算科學(xué)學(xué)院實(shí)驗(yàn)報告實(shí)驗(yàn)項(xiàng)目名稱Eular方法求解一階常微分方程數(shù)值解所屬課程名稱偏微分方程數(shù)值解實(shí)驗(yàn)類型驗(yàn)證性實(shí)驗(yàn)日期20
2025-07-24 00:27
【摘要】習(xí)題4—11.求解下列微分方程1)解利用微分法得當(dāng)時,得從而可得原方程的以P為參數(shù)的參數(shù)形式通解或消參數(shù)P,得通解當(dāng)時,則消去P,得特解2);解利用微分法得 當(dāng)時,得從而可得原方程以p為參數(shù)的參數(shù)形式通解:或消p得通解當(dāng)時,消去p得特解3)解利用微分法,得兩
2025-06-18 08:29
【摘要】《常微分方程》自學(xué)指導(dǎo)書一、課程編碼、適用專業(yè)及教材課程編碼:110621211總學(xué)時:90學(xué)時,其中面授學(xué)時:28學(xué)時,自學(xué)學(xué)時:62學(xué)時。適用專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)(函授本科)使用教材:王高雄等編,常微分方程,高等教育出版社(第二版),1983.9。二、課程性質(zhì)常微分方程科程是高等院校數(shù)學(xué)專業(yè)在數(shù)學(xué)分析和高等代數(shù)基礎(chǔ)上繼續(xù)深入和發(fā)展的一門
2025-09-25 15:52
【摘要】常微分方程課程教學(xué)大綱(OrdinaryDifferentialEquation)課程性質(zhì):學(xué)科基礎(chǔ)課適用專業(yè):信息與計(jì)算科學(xué)先修課程:數(shù)學(xué)分析、高等代數(shù)、普通物理后續(xù)課程:微分方程數(shù)值解總學(xué)分:3教學(xué)目的與要求:微分方程是數(shù)學(xué)理論聯(lián)系實(shí)際的重要渠道之一,也是其它數(shù)學(xué)分支的一個綜合應(yīng)用場所,我們所研究的方程多數(shù)是由其它學(xué)科(如物理、氣象、生態(tài)學(xué)、經(jīng)濟(jì)學(xué))推
2025-08-22 20:44
【摘要】2021/6/17常微分方程§微分方程的降階和冪級數(shù)解法2021/6/17常微分方程一、可降階的一些方程類型n階微分方程的一般形式:0),,,,()('?nxxxtF?1不顯含未知函數(shù)x,或更一般不顯含未知函數(shù)及其直到k-1(k1)階導(dǎo)數(shù)的方程是)(0),,,,()()1()(??
2025-05-11 05:30
【摘要】第二節(jié)可分離變量的微分方程微分方程的類型是多種多樣的,它們的解法也各不相同.從本節(jié)開始我們將根據(jù)微分方程的不同類型,給出相應(yīng)的解法.本節(jié)我們將介紹可分離變量的微分方程以及一些可以化為這類方程的微分方程,如齊次方程等.內(nèi)容分布圖示★可分離變量微分方程 ★例1★例2 ★例3 ★例4★例5 ★例6 ★例7★邏輯
2025-09-25 14:33
2025-06-24 15:07
【摘要】可分離變量的微分方程第二節(jié)一階微分方程的一般形式:(,)yfxy??(,)(,)0PxydxQxydy??(變量與對稱)xy若將看作未知函數(shù),則有x若將看作未知函數(shù),則有y(,)((,)0)(,)dyPxyQxydxQ
2025-07-18 15:26
【摘要】一、填空題(每空2分,共16分)。1、方程滿足解的存在唯一性定理?xiàng)l件的區(qū)域是 xoy平面 .2.方程組的任何一個解的圖象是n+1維空間中的一條積分曲線.3.連續(xù)是保證方程初值唯一的充分條件.4.方程組的奇點(diǎn)的類型是中心5.方程的通解是6.變量可分離方程的積分因子是7.二階線性齊次微分方程的兩個解