【摘要】第3章三角恒等變換兩角和與差的三角函數(shù)兩角和與差的余弦一、填空題1.cos15°的值是________.2.若cos(α-β)=13,則(sinα+sinβ)2+(cosα+cosβ)2=________.3.已知α、β均為銳角,且sinα=55,cosβ
2024-12-05 10:15
【摘要】兩角和與差的正弦一、填空題1.sin245°sin125°+sin155°sin35°的值是________.2.若銳角α、β滿足cosα=45,cos(α+β)=35,則sinβ的值是________.3.已知cosαcosβ-sinαsin
【摘要】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式二倍角的正弦、余弦、正切公式1.會從兩角和的正弦、余弦、正切公式導出二倍角的正弦、余弦、正切公式.(重點)2.能熟練運用二倍角的公式進行簡單的恒等變換,并能靈活地將公式變形運用.(重點、難點)二倍角公式做一做(1)若sinα
2024-12-04 20:24
【摘要】數(shù)學:“兩角差的余弦公式”教學設計一、教學內(nèi)容解析三角恒等變換處于三角函數(shù)與數(shù)學變換的結合點和交匯點上,是前面所學三角函數(shù)知識的繼續(xù)與發(fā)展,是培養(yǎng)學生推理能力和運算能力的重要素材.兩角差的余弦公式是《三角恒等變換》這一章的基礎和出發(fā)點,公式的發(fā)現(xiàn)和證明是本節(jié)課的重點,也是難點.由于和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,我們可以
2025-11-09 21:26
【摘要】3.二倍角的正弦、余弦和正切公式命題方向1用倍角公式化簡例1化簡三角函數(shù)式:2cos8+2-2sin8+1.[分析]將根號下的式子化為完全平方式,再開出來運算.[解析]原式=4cos24-21+2sin4cos4=2|cos4|-2|sin4+cos4|,∵π43π2,
2024-12-05 06:46
【摘要】兩角和與差的余弦公式一.學習要點:兩角和與差的余弦公式及其簡單應用。二.學習過程:1.兩角和與差的余弦公式及推導:公式:
2024-11-27 23:39
【摘要】兩角差的余弦公式重點:兩角差的余弦公式的推導過程及應用.難點:公式的推導過程及應用技巧.(1)兩角差的余弦公式是推導其他和(差)角公式的根源,誘導公式是兩角和與差的三角函數(shù)公式的特殊情況.兩角中若有的整數(shù)倍角,使用誘導公式會簡化運算,不需要再用兩角和與差的三角函數(shù)公式展開來計算.(2)兩角差的余弦公式不能按照分配律展開,
【摘要】兩角差的余弦公式一、當α、β為銳角時,cos(α-β)=cosαcosβ+sinαsinβ的向量證明方法.圖3證明:如圖3所示,在直角坐標系中作單位圓O,并作角α與-β,設角α的終邊與單位圓交于點P1,-β角的終邊與單位圓交于點P2,則1OP=(cosα,sinα),2OP=(cosβ,sinβ),
2024-12-04 23:46
【摘要】兩角和與差的正弦公式一.學習要點:兩角和與差的正弦公式及其簡單應用。二.學習過程:1.兩角和與差的正弦公式及推導:公式:
2024-11-27 23:36
【摘要】兩角差的余弦公式考查知識點及角度難易度及題號基礎中檔稍難公式的簡單運用1、2、4給值求值問題56、8、9、11綜合應用37、10、12131.化簡cos(45°-α)cos(α+15°)-sin(45°-α)·si
2024-12-05 01:56
【摘要】兩角差的余弦公式1.下列式子中,正確的個數(shù)為()①cos(α-β)=cosα-cosβ;②cos??????π2+α=sinα;③cos(α-β)=cosαcosβ-sinαsinβ.A.0B.1C.2D.3解析:三個式子均不正確.
【摘要】課題:兩角和與差的正切朝花夕拾目標1目標2目標1和角與差角正切公式的推導??tantantan1tantan?????????????tantantan1tantan???????????目標2和角與差角正切公式的應用????tantantan1tantan?
2025-10-31 23:32
【摘要】課題:兩角和與差的余弦班級:姓名:學號:第學習小組【學習目標】,體會向量與三角函數(shù)之間的關系;、求值、證明【課前預習】1.已知向量),(=),(=221,1yxbyxa,夾角為?,則?ba??==2.
2025-11-11 01:05
【摘要】二倍角的正弦、余弦、正切公式學習目標:1、以兩角和正弦、余弦和正切公式為基礎,推導二倍角正弦、余弦和正切公式2、二倍公式角的理解及其靈活運用回憶兩角和的正弦、余弦、正切公式??????sinsincoscos)cos(?????????sincoscossin)sin(
2025-11-09 08:49
【摘要】課題:兩角和與差的正弦班級:姓名:學號:第學習小組【學習目標】(差)角公式推導出正弦和(差)角公式;(差)角公式進行簡單的三角函數(shù)式的化簡,求值?!菊n前預習】1、余弦的和差角公式:??)cos(??;??)co
2025-11-10 21:43