【摘要】第3章導(dǎo)數(shù)及其應(yīng)用(B)(時(shí)間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.直線y=kx+1與曲線y=x3+ax+b相切于點(diǎn)A(1,3),則b的值為________.2.已知函數(shù)f(x)=(5x+3)lnx,則f′??????13=________
2024-12-05 09:21
【摘要】拓展資料:拉格朗日法國(guó)數(shù)學(xué)家、力學(xué)家及天文學(xué)家拉格朗日于1736年1月25日在意大利西北部的都靈出生。少年時(shí)讀了哈雷介紹牛頓有關(guān)微積分之短文,因而對(duì)分析學(xué)產(chǎn)生興趣。他亦常與歐拉有書信往來(lái),于探討數(shù)學(xué)難題「等周問(wèn)題」之過(guò)程中,當(dāng)時(shí)只有18歲的他就以純分析的方法發(fā)展了歐拉所開創(chuàng)的變分法,奠定變分法之理論基礎(chǔ)。后入都靈大學(xué)。1755年,
2024-12-05 06:37
【摘要】導(dǎo)數(shù)在實(shí)際問(wèn)題中的應(yīng)用目標(biāo)認(rèn)知學(xué)習(xí)目標(biāo):1.會(huì)從幾何直觀了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間,對(duì)多項(xiàng)式函數(shù)一般不超過(guò)三次.2.了解函數(shù)在某點(diǎn)取得極值的必要條件(導(dǎo)數(shù)在極值點(diǎn)兩端異號(hào))和充分條件();會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值,對(duì)多項(xiàng)式函數(shù)一般不超過(guò)三次.3.會(huì)求閉區(qū)間上函數(shù)的
2024-12-04 23:43
【摘要】計(jì)算導(dǎo)數(shù)同步練習(xí)一,選擇題:1.曲線y=ln(2x-1)上的點(diǎn)到直線2x-y+3=0的最短距離是()A、5B、25C、35D、02、設(shè)P點(diǎn)是曲線3233???xxy上的任意一點(diǎn),P點(diǎn)處切線傾斜角為?,則角?的取值范圍是(
2024-12-05 06:39
【摘要】第三章章末小結(jié)問(wèn)題1:推理一般包括合情推理和演繹推理,它們都是日常學(xué)習(xí)和生活中經(jīng)常應(yīng)用的思維方法,合情推理包括歸納推理和類比推理,具有猜測(cè)和發(fā)現(xiàn)新結(jié)論、探索和提供解決問(wèn)題的思路和方向的作用;演繹推理則具有證明結(jié)論,整理和構(gòu)建知識(shí)體系的作用,是公理體系中的基本推理方法.問(wèn)題2:三段論是演繹推理的主
2024-11-19 19:08
【摘要】導(dǎo)數(shù)應(yīng)用第四章§1函數(shù)的單調(diào)性與極值導(dǎo)數(shù)與函數(shù)的單調(diào)性第四章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí)結(jié)合實(shí)例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求不超過(guò)三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間.函數(shù)的單調(diào)性與導(dǎo)函數(shù)正負(fù)的關(guān)
2024-11-16 23:23
【摘要】1.2類比推理學(xué)習(xí)要求1.通過(guò)具體實(shí)例理解類比推理的意義;2.會(huì)用類比推理對(duì)具體問(wèn)題作出判斷.學(xué)法指導(dǎo)類比推理是在兩類不同的事物之間進(jìn)行對(duì)比,找出若干相同或相似點(diǎn)之后,推測(cè)在其他方面也可以存在相同或相似之處的一種推理模式.歸納和類比是合情推理常用的思維方法,其結(jié)論不一定正確.本課時(shí)欄目開關(guān)
2024-12-04 20:24
【摘要】本課時(shí)欄目開關(guān)填一填研一研練一練§2學(xué)習(xí)要求1.理解演繹推理的意義.2.掌握演繹推理的基本模式,并能運(yùn)用它們進(jìn)行一些簡(jiǎn)單推理.3.了解合情推理和演繹推理之間的區(qū)別和聯(lián)系.學(xué)法指導(dǎo)演繹推理是數(shù)學(xué)證明的主要工具,其一般模式是三段論.學(xué)習(xí)中要挖掘證明過(guò)程包含的推理思路,
2024-12-04 21:32
【摘要】導(dǎo)數(shù)的四則運(yùn)算法則一、教學(xué)目標(biāo):掌握八個(gè)函數(shù)求導(dǎo)法則及導(dǎo)數(shù)的運(yùn)算法則并能簡(jiǎn)單運(yùn)用.二、教學(xué)重點(diǎn):應(yīng)用八個(gè)函數(shù)導(dǎo)數(shù)求復(fù)雜函數(shù)的導(dǎo)數(shù)..教學(xué)難點(diǎn):商求導(dǎo)法則的理解與應(yīng)用.三、教學(xué)過(guò)程:(一)新課1.基本初等函數(shù)的導(dǎo)數(shù)公式(見教材)2.導(dǎo)數(shù)運(yùn)算法則:(1).和(或差)的導(dǎo)數(shù)法則1兩個(gè)函數(shù)的和(或差)的導(dǎo)數(shù),等
2024-12-05 01:49
【摘要】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)第三章第2課瞬時(shí)變化率—導(dǎo)數(shù)(曲線上一點(diǎn)處切線)教學(xué)案蘇教版選修1-1班級(jí):高二()班姓名:____________教學(xué)目標(biāo):1.理解并掌握曲線在某一點(diǎn)處的切線的概念;2.理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;3.理解切線概念的實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)
2024-11-20 00:30
【摘要】拓展資料:導(dǎo)數(shù)在證明恒等式中的應(yīng)用一、預(yù)備知識(shí)定理1若函數(shù)f(x)在區(qū)間I上可導(dǎo),且x∈I,有f′(x)=0,則x∈I,有f(x)=c(常數(shù)).證明在區(qū)間I上取定一點(diǎn)x0及x∈I.顯然,函數(shù)f(x)在[x0,x]或[x,x0]上滿足拉格朗日定理,有f(x)-f(x0)=f′(ξ)(x
2024-11-19 23:16
【摘要】最大值、最小值問(wèn)題學(xué)習(xí)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請(qǐng)函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識(shí)解決實(shí)際問(wèn)題的能力.學(xué)習(xí)重點(diǎn):求函數(shù)的最值及求實(shí)際問(wèn)題的最值.學(xué)習(xí)難點(diǎn):求實(shí)際問(wèn)題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點(diǎn)要把實(shí)際問(wèn)題“數(shù)學(xué)化”,即建立數(shù)學(xué)模型.學(xué)
2024-12-05 06:35
【摘要】《導(dǎo)數(shù)的幾何意義》先來(lái)復(fù)習(xí)導(dǎo)數(shù)的概念定義:設(shè)函數(shù)y=f(x)在點(diǎn)x0處及其附近有定義,當(dāng)自變量x在點(diǎn)x0處有改變量Δx時(shí)函數(shù)有相應(yīng)的改變量Δy=f(x0+Δx)-f(x0).如果當(dāng)Δx?0時(shí),Δy/Δx的極限存在,這個(gè)極限就叫做函數(shù)f(x)在點(diǎn)x0處的導(dǎo)數(shù)(或變化率)記作
2024-11-18 12:15
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用(時(shí)間90分鐘,滿分120分)一、選擇題(本大題共10小題,每小題5分共50分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.設(shè)質(zhì)點(diǎn)M按規(guī)律s=3t2+5作直線運(yùn)動(dòng),則質(zhì)點(diǎn)M()A.在t=1時(shí)的瞬時(shí)速度為11B.在t=2時(shí)的瞬時(shí)速度為12C.在t=3時(shí)的瞬時(shí)速度為1
2024-12-05 01:51
【摘要】數(shù)學(xué)命題?一、判斷與命題?1.判斷?判斷是對(duì)思維對(duì)象有所斷定的一種思維形式。這里所說(shuō)的斷定,就是“肯定”或“否定”事物的某種性質(zhì)或事物之間有某種關(guān)系。如:是無(wú)理數(shù);它不是一位教師。?判斷作為一種思維形式,具有兩個(gè)基本的邏輯特征:?(1)必須有斷定。
2024-11-17 15:05