【摘要】第二章二次函數(shù)導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)第2課時商品利潤最大問題二次函數(shù)的應(yīng)用學(xué)習(xí)目標(biāo)利潤問題.(重點)值范圍.(難點)導(dǎo)入新課情境引入短片中,賣家使出渾身解數(shù)來賺錢.商品買賣過程中,作為商家利潤最大化是永恒的追求.如果你是商家
2025-06-14 03:00
【摘要】4二次函數(shù)的應(yīng)用第二章二次函數(shù)課堂達標(biāo)素養(yǎng)提升第二章二次函數(shù)第1課時最大面積問題課堂達標(biāo)一、選擇題第1課時最大面積問題1.2022·南通一模為搞好環(huán)保,某公司準(zhǔn)備修建一個長方體的污水處理池,矩形池底的周長為100m,則池底的最大面積是()
2025-06-13 00:01
【摘要】舉一綱而萬目張,解一卷而眾篇明。
2024-12-08 03:10
【摘要】第二章二次函數(shù)一、選擇題1.拋物線y=-3x2+2x-l的圖象與坐標(biāo)軸的交點個數(shù)是()A.無交點B.1個C.2個D.3個2、拋物線y=-2x2-4x-5經(jīng)過平移后得到拋物線y=-2x2,平移方法是()A.向左平移1個單位,再向下平移3
2024-11-28 19:21
【摘要】第二章二次函數(shù)二次函數(shù)的應(yīng)用知識點1利用二次函數(shù)求圖形面積的最值20cm,則這個直角三角形的最大面積為(B)cm2cm2cm22.用長8m的鋁合金條制成使窗戶的透光面積最大的矩形窗框(如圖),那么這個窗戶的最大透光面積是(C)A.6425m2
2025-06-18 00:33
【摘要】二次函數(shù)的應(yīng)用第1課時能力提升1.(2021浙江金華中考)如圖是某拱形大橋的示意圖,橋拱與橋面的交點為O,B,以點O為原點,水平直線OB為x軸,建立平面直角坐標(biāo)系,橋的拱形可以近似看成拋物線y=-(x-80)2+16,橋拱與橋墩AC的交點C恰好在水面,有AC⊥x軸,若OA=10m,則橋面離水面的高度A
2024-12-03 11:48
【摘要】課題:二次函數(shù)的圖像和性質(zhì)課型:新授課年級:九年級教學(xué)目標(biāo):1.通過學(xué)生自己動手列表、描點、連線,能夠正確作出二次函數(shù)y=a(x-h)2+k的圖象,提高學(xué)生的作圖能力2.通過觀察圖象能夠正確指出y=a(x-h)2+k的開口方向、對稱軸和頂點坐標(biāo),訓(xùn)練學(xué)生的概括、總結(jié)能力3.理解二次函數(shù)
2024-12-08 05:07
【摘要】第二章二次函數(shù)本專題包括求圖形面積的最值問題、求拋物線形運動問題、求拋物線形建筑物問題、求銷售中最大利潤問題,是中考??嫉念}型,特別是利潤問題,是近年考查的熱點題型.類型1求面積(體積)的最值問題1.如圖,有一塊邊長為6cm的正三角形紙板,在它的三個角處分別截去一個彼此全等的箏形,再沿圖中的虛線折起,做成一個無蓋的
2025-06-12 00:36
【摘要】——培根二次函數(shù)的圖像與性質(zhì)(2)22yxyx???與的圖象一樣嗎?它們有什么相同點?不同點?22yxyx???與這兩種呢?有沒有其他形式的二次函數(shù)?x…-3-2-10123…y=x2…
2024-11-17 22:41
2025-06-16 16:42
【摘要】第二章二次函數(shù)1二次函數(shù)1.探索并歸納二次函數(shù)的定義.2.能夠表示簡單變量之間的二次函數(shù)關(guān)系.函數(shù)變量之間的關(guān)系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.
2025-06-15 02:59
2025-06-15 02:53
【摘要】第二章二次函數(shù)1二次函數(shù)【基礎(chǔ)梳理】二次函數(shù)的定義及相關(guān)概念若兩個變量x,y之間的對應(yīng)關(guān)系可以表示成__________(a,b,c為常數(shù),a≠0)的形式,則稱y是x的二次函數(shù).其中__是二次項系數(shù),__是一次項系數(shù),__是常數(shù)項.y=ax2+bx+cabc【自我診斷】1.(1)y=
2025-06-12 12:36
2025-06-21 02:27
【摘要】4二次函數(shù)的應(yīng)用第2課時T恤衫銷售過程中最大利潤等問題的過程,體會二次函數(shù)是一類最優(yōu)化問題的數(shù)學(xué)模型,感受數(shù)學(xué)的應(yīng)用價值.,并運用二次函數(shù)的知識求出實際問題的最大值、最小值.(0)ka??2二次函數(shù)y=a(x-h)頂點坐標(biāo)為(h,k)①當(dāng)a0時,y有最小值k②當(dāng)a0時,y有最大值
2025-06-20 22:57