【摘要】2021/6/17常微分方程§微分方程的降階和冪級(jí)數(shù)解法2021/6/17常微分方程一、可降階的一些方程類(lèi)型n階微分方程的一般形式:0),,,,()('?nxxxtF?1不顯含未知函數(shù)x,或更一般不顯含未知函數(shù)及其直到k-1(k1)階導(dǎo)數(shù)的方程是)(0),,,,()()1()(??
2025-05-11 05:30
【摘要】第二節(jié)可分離變量的微分方程微分方程的類(lèi)型是多種多樣的,它們的解法也各不相同.從本節(jié)開(kāi)始我們將根據(jù)微分方程的不同類(lèi)型,給出相應(yīng)的解法.本節(jié)我們將介紹可分離變量的微分方程以及一些可以化為這類(lèi)方程的微分方程,如齊次方程等.內(nèi)容分布圖示★可分離變量微分方程 ★例1★例2 ★例3 ★例4★例5 ★例6 ★例7★邏輯
2025-09-25 14:33
【摘要】Depart.Math.,USTC宣本金偏微分方程的建立?運(yùn)輸方程的建立?弦振動(dòng)方程的建立?熱傳導(dǎo)方程的建立?泊松方程的建立Depart.Math.,USTC宣本金偏微分方程的導(dǎo)出-運(yùn)輸方程(石油管道運(yùn)輸、南水北調(diào))Depart.Math.,USTC宣本金偏微分方程的
2025-07-18 09:17
【摘要】YANGZHOUUNIVERSITY一階微分方程的機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束習(xí)題課(一)一、一階微分方程求解二、解微分方程應(yīng)用問(wèn)題解法及應(yīng)用第十二章YANGZHOUUNIVERSITY一、一階微分方程求解1.一階標(biāo)準(zhǔn)類(lèi)型方程求解關(guān)鍵
2025-07-17 23:41
【摘要】1微分方程的例題分析及解法本單元的基本內(nèi)容是常微分方程的概念,一階常微分方程的解法,二階常微分方程的解法,微分方程的應(yīng)用。一、常微分方程的概念本單元介紹了微分方程、常微分方程、微分方程的階、解、通解、特解、初始條件等基本概念,要正確理解這些概念;要學(xué)會(huì)判別微分方程的類(lèi)型,理解線(xiàn)性微分方程解的結(jié)構(gòu)定理。二、一階常微分方程的解法本
2025-01-09 07:10
【摘要】微分方程邊值問(wèn)題的數(shù)值方法本部分內(nèi)容只介紹二階常微分方程兩點(diǎn)邊值問(wèn)題的的打靶法和差分法。二階常微分方程為 當(dāng)關(guān)于為線(xiàn)性時(shí),即,此時(shí)變成線(xiàn)性微分方程 對(duì)于方程或,其邊界條件有以下3類(lèi):第一類(lèi)邊界條件為 當(dāng)或者時(shí)稱(chēng)為齊次的,否則稱(chēng)為非齊次的。第二類(lèi)邊界條件為 當(dāng)或者時(shí)稱(chēng)為齊次的,否則稱(chēng)為非齊次的。第三類(lèi)邊界條件為 其中,當(dāng)或者稱(chēng)為
2025-06-07 19:14
【摘要】第5章微分方程一、內(nèi)容精要(一)主要定義微分方程中出現(xiàn)的未知函數(shù)導(dǎo)數(shù)的最高階數(shù)叫做微分方程的階,本光盤(pán)只限討論常微分方程.含有自變量、未知函數(shù)以及未知函數(shù)的導(dǎo)數(shù)或微分的方程叫做微分方程;未知
2025-01-19 14:35
【摘要】微分方程模型馬忠明動(dòng)態(tài)模型?描述對(duì)象特征隨時(shí)間(空間)的演變過(guò)程?分析對(duì)象特征的變化規(guī)律?預(yù)報(bào)對(duì)象特征的未來(lái)性態(tài)?研究控制對(duì)象特征的手段?根據(jù)函數(shù)及其變化率之間的關(guān)系確定函數(shù)微分方程建模?根據(jù)建模目的和問(wèn)題分析作出簡(jiǎn)化假設(shè)?按照內(nèi)在規(guī)律或用類(lèi)比
2025-01-17 14:49
【摘要】無(wú)窮級(jí)數(shù)數(shù)項(xiàng)級(jí)數(shù)冪級(jí)數(shù)討論斂散性求收斂范圍,將函數(shù)展開(kāi)為冪級(jí)數(shù),求和。傅立葉級(jí)數(shù)求函數(shù)的傅立葉級(jí)數(shù)展開(kāi),討論和函數(shù)的性質(zhì)。給定一個(gè)數(shù)列??,,,,,321nuuuu將各項(xiàng)依,1???nnu即稱(chēng)上式為無(wú)窮級(jí)數(shù),其中第n項(xiàng)nu叫做級(jí)數(shù)的一般項(xiàng)
2025-09-26 00:06
【摘要】第四次:常微分方程數(shù)值解一:引言:1:微分方程在數(shù)模中有重要作用。2:列出微分方程僅是第一步,求解微方程為第二步。3:但僅有少數(shù)微分方程可解析解,大部分非線(xiàn)性方程,變系數(shù)方程,均所謂“解不出來(lái)”)1()()(()()]()[()(:1____])
2025-08-20 11:53
【摘要】第十二章常微分方程(A)一、是非題1.任意微分方程都有通解。(X)2.微分方程的通解中包含了它所有的解。(X)3.函數(shù)是微分方程的解。(O)4.函數(shù)是微分方程的解。(X)5.微分方程的通解是(為任意常數(shù))。(O)6.是一階線(xiàn)性微分方程。(X)7.不是一階線(xiàn)性微分方程。(O)8.的特征方程為
2025-06-24 15:00
【摘要】吉首大學(xué)本科生畢業(yè)論文目錄摘要 IAbstract II第1章緒論 1課題研究背景及目的 1研究現(xiàn)狀 1研究方法 1研究?jī)?nèi)容 2第2章 經(jīng)濟(jì)學(xué)中常用微分方程的解法 3微分方程的簡(jiǎn)介 3 經(jīng)濟(jì)中常用微分方程的解法 3第3章 三個(gè)經(jīng)濟(jì)模型 8 價(jià)格調(diào)整模型 8 蛛網(wǎng)模型 9 Logistic模型 10
2025-06-28 18:14
【摘要】常微分方程習(xí)題及解答一、問(wèn)答題:1.常微分方程和偏微分方程有什么區(qū)別?微分方程的通解是什么含義?答:微分方程就是聯(lián)系著自變量,未知函數(shù)及其導(dǎo)數(shù)的關(guān)系式。常微分方程,自變量的個(gè)數(shù)只有一個(gè)。偏微分方程,自變量的個(gè)數(shù)為兩個(gè)或兩個(gè)以上。常微分方程解的表達(dá)式中,可能包含一個(gè)或幾個(gè)任意常數(shù),若其所包含的獨(dú)立的任意常數(shù)的個(gè)數(shù)恰好與該方程的階數(shù)相同,這樣的解為該微分方程的通解。2.舉例闡述常
2025-03-25 01:12
【摘要】第四節(jié)一階線(xiàn)性微分方程教學(xué)目的:使學(xué)生掌握一階線(xiàn)性微分方程的解法,了解伯努利方程的解法教學(xué)重點(diǎn):一階線(xiàn)性微分方程教學(xué)過(guò)程:一、一階線(xiàn)性微分方程方程叫做一階線(xiàn)性微分方程.如果Q(x)o0,則方程稱(chēng)為齊次線(xiàn)性方程,否則方程稱(chēng)為非齊次線(xiàn)性方程.方程叫做對(duì)應(yīng)于非齊次線(xiàn)性方程的齊次線(xiàn)性方程.
2025-08-22 06:00
【摘要】全微分方程及積分因子內(nèi)容:湊微分法,全微分方程的判別式,全微分方程的公式解,積分因子的微分方程,只含一個(gè)變量的積分因子和其他特殊形式的積分因子。由于有數(shù)學(xué)分析多元微積分的基礎(chǔ),本節(jié)的定理1可以簡(jiǎn)化處理。對(duì)課本中第三塊知識(shí)即全微分方程的物理背景可以留到后面處理,對(duì)第四塊知識(shí)增解和失解的情況要分散在本章各小節(jié),每次都要重視這個(gè)問(wèn)題。關(guān)于初等積分法的局限性可歸到學(xué)習(xí)近似解法時(shí)一起講解。重點(diǎn):全
2025-06-22 19:10