【摘要】雙曲線的幾何性質(zhì)濟(jì)源三中盧新民一、知識(shí)再現(xiàn)前面我們學(xué)習(xí)了橢圓的簡(jiǎn)單的幾何性質(zhì):范圍、對(duì)稱性、頂點(diǎn)、離心率.我們來共同回顧一下橢圓
2024-11-18 10:03
【摘要】第二章§3理解教材新知把握熱點(diǎn)考向應(yīng)用創(chuàng)新演練知識(shí)點(diǎn)考點(diǎn)一考點(diǎn)二考點(diǎn)三如圖是阿聯(lián)酋阿布扎比國(guó)家展覽中心(ADNEC).阿布扎比是阿聯(lián)酋的首都,這個(gè)雙曲線塔形建筑是中東最大的展覽中心.它的形狀就像一條雙曲線.這
2024-11-17 23:47
【摘要】第六節(jié)雙曲線基礎(chǔ)梳理1.雙曲線的定義(1)平面內(nèi)動(dòng)點(diǎn)的軌跡是雙曲線必須滿足兩個(gè)條件:①到兩個(gè)定點(diǎn)F1、F2的距離的________等于常數(shù)2a;②2a______|F1F2|.(2)上述雙曲線的焦點(diǎn)是________,焦距是________.2.雙曲線的標(biāo)準(zhǔn)方程和幾何性質(zhì)-標(biāo)準(zhǔn)方程
2024-11-11 05:50
【摘要】雙曲線習(xí)題課雙曲線的第二定義:曲線,則這個(gè)點(diǎn)的軌跡是雙是常數(shù)的距離的比線的距離和它到一條定直與一個(gè)定點(diǎn)動(dòng)點(diǎn))1(??eacelFM.是雙曲線的離心率準(zhǔn)線,常數(shù)定直線叫做雙曲線的定點(diǎn)是雙曲線的焦點(diǎn),e,對(duì)于雙曲線12222??bxaycayy2??程是:軸上的雙曲線的準(zhǔn)線方焦點(diǎn)在yl'l.
2024-11-06 23:49
【摘要】1《雙曲線的簡(jiǎn)單幾何性質(zhì)》教學(xué)設(shè)計(jì)富源縣第一中學(xué)李耀明一、教材分析本節(jié)課是學(xué)生在已掌握雙曲線的定義及標(biāo)準(zhǔn)方程之后,在此基礎(chǔ)上,反過來利用雙曲線的標(biāo)準(zhǔn)方程研究其幾何性質(zhì)。它是教學(xué)大綱要求學(xué)生必須掌握的內(nèi)容,也是高考的一個(gè)考點(diǎn),是深入研究雙曲線,靈活運(yùn)用雙曲線的定義、方程、性質(zhì)解題的基礎(chǔ),更能使
2024-11-21 03:48
【摘要】高考圓錐曲線---雙曲線雙曲線的簡(jiǎn)單幾何性質(zhì)【知識(shí)點(diǎn)1】雙曲線-=1的簡(jiǎn)單幾何性質(zhì)(1)范圍:|x|≥a,y∈R.(2)對(duì)稱性:雙曲線的對(duì)稱性與橢圓完全相同,關(guān)于x軸、y軸及原點(diǎn)中心對(duì)稱.(3)
2025-06-16 23:32
【摘要】雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)一、雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì).1.雙曲線的定義:平面內(nèi)與兩定點(diǎn)F1、F2的距離差的絕對(duì)值是常數(shù)(大于零,小于|F1F2|)的點(diǎn)的軌跡叫雙曲線。兩定點(diǎn)F1、F2是焦點(diǎn),兩焦點(diǎn)間的距離|F1F2|是焦距,用2c表示,常數(shù)用2表示。(1)若|MF1|-|MF2|=2時(shí),曲線只表示焦點(diǎn)F2所對(duì)應(yīng)的一支雙曲線.(2)若|MF1|-|MF2|=-2時(shí),曲線只表
2024-07-23 18:45
【摘要】......雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)一、雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì).1.雙曲線的定義:平面內(nèi)與兩定點(diǎn)F1、F2的距離差的絕對(duì)值是常數(shù)(大于零,小于|F1F2|)的點(diǎn)的軌跡叫雙曲線。兩定點(diǎn)F1、F2是焦點(diǎn),兩焦點(diǎn)間的距離|F1F
2024-07-23 18:54
【摘要】第二講:雙曲線考綱要求:圓錐曲線①了解圓錐曲線的實(shí)際背景,了解圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用.②掌握橢圓、拋物線的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡(jiǎn)單性質(zhì).③了解雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡(jiǎn)單幾何性質(zhì).④了解圓錐曲線的簡(jiǎn)單應(yīng)用.⑤理解數(shù)形結(jié)合的
2024-11-10 23:01
【摘要】定義法:通過判斷題意,能知道動(dòng)點(diǎn)軌跡是已知曲線,直線用已知曲線的定義方程求解出點(diǎn)的軌跡方程。范例:已知點(diǎn)A和B,動(dòng)點(diǎn)P滿足|PA|=|PB|,求P的軌跡直接法:通過判斷題意,能找到動(dòng)點(diǎn)滿足的幾何或代數(shù)條件,可以(1)建系(2)設(shè)動(dòng)點(diǎn)(3)列等式(4)等價(jià)化簡(jiǎn)(5)驗(yàn)證這五步求出點(diǎn)的軌跡方程。范例:已知點(diǎn)A和B,動(dòng)點(diǎn)P到A、B兩
2024-11-12 17:11
【摘要】評(píng)講作業(yè)及《勸學(xué)》的雙曲線方程。弦長(zhǎng)為所截得的,且直線:求漸進(jìn)線方程為33803021?????yxyx)0(422?????yx解:設(shè)所求雙曲線為????????2243yxxy聯(lián)立0362432??????xx3383)36(12241122???????d4???14:2
【摘要】一般地,在直角直角坐標(biāo)系中,如果某曲線C上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解;(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).曲線C上的點(diǎn)的坐標(biāo)構(gòu)成集合為A二元方程f(x,y)=0的解集為BBA?AB?那么這個(gè)方程叫做曲線的方程;
2024-08-25 02:33
【摘要】雙曲線基礎(chǔ)練習(xí)題一、選擇題1.已知a=3,c=5,并且焦點(diǎn)在x軸上,則雙曲線的標(biāo)準(zhǔn)程是()A.B.C.2.已知并且焦點(diǎn)在y軸上,則雙曲線的標(biāo)準(zhǔn)方程是()A.B.C.D.3..雙曲線上P點(diǎn)到左焦點(diǎn)的距離是6,則P到右焦點(diǎn)的距離是()A.12B.14C.16D.
2025-03-26 05:43
【摘要】的幾何性質(zhì)(1)222bac??定義圖象方程焦點(diǎn)的關(guān)系||MF1|-|MF2||=2a(2a|F1F2|)F(±c,0)F(0,±c)12222??byax12222
2024-11-21 03:33
【摘要】......雙曲線的簡(jiǎn)單幾何性質(zhì)練習(xí)題班級(jí)姓名學(xué)號(hào)1.已知雙曲線的離心率為2,焦點(diǎn)是(-4,0),(4,0),則雙曲線方程為( )A.-=
2025-03-24 23:28