【摘要】定義含有未知函數(shù)的導(dǎo)數(shù)或微分的方程,稱為微分方程.未知函數(shù)是一元函數(shù)的微分方程,稱為常微分方程.微分方程中出現(xiàn)的未知函數(shù)導(dǎo)數(shù)(或微分)的最高階數(shù),稱為微分方程的階.一階微分方程的一般形式為0),,(??yyxF.基本概念例如,都是一階微分方程.22xyyy???
2025-10-10 13:27
【摘要】第三單元微分中值定理與導(dǎo)數(shù)應(yīng)用一、填空題1、__________。2、函數(shù)在區(qū)間______________單調(diào)增。3、函數(shù)的極大值是____________。4、曲線在區(qū)間__________是凸的。5、函數(shù)在處的階泰勒多項式是_________。6、曲線的拐點坐標(biāo)是_________。7、若在含的(其中)內(nèi)恒有二階負(fù)的導(dǎo)數(shù),且_______,則是在上的
2025-08-17 11:37
【摘要】第二章習(xí)題2—1一、填空題=2x+b是拋物線y=x2在某點處的法線,則b=__________.,其上升高度與時間的關(guān)系為s(t)=3t-gt2,問物體在時間間隔[t0,t0+]的平均速度________,t0時刻的即時速度________,到達最高點的時刻______.二、選擇題1.設(shè)
2025-07-23 11:16
【摘要】《高等數(shù)學(xué)》Ⅱ—Ⅰ課程教案第三章微分中值定理與導(dǎo)數(shù)的應(yīng)用本章內(nèi)容是上一章的延續(xù),主要是利用導(dǎo)數(shù)與微分這一方法來分析和研究函數(shù)的性質(zhì)及其圖形和各種形態(tài),這一切的理論基礎(chǔ)即為在微分學(xué)中占有重要地位的幾個微分中值定理。在分析、論證過程中,中值定理有著廣泛的應(yīng)用。一、教學(xué)目標(biāo)與基本要求(一)知識、拉格朗日中值定理、柯西中值定理的條件和結(jié)論;;,sin(x),cos(
2025-06-24 23:00
【摘要】導(dǎo)數(shù)的定義0()yfxx?設(shè)函數(shù)在點的某定義:個鄰域內(nèi)0,(xxx?有定義當(dāng)自變量在處取得增量點0),xxy??仍在該鄰域內(nèi)時相應(yīng)地函數(shù)取得00()();yfxxfxyx???????增量如果與之0,()xyfx?
2025-08-05 04:41
【摘要】第2章導(dǎo)數(shù)與微分本章重點導(dǎo)數(shù)與微分的概念;基本初等函數(shù)的求導(dǎo)公式;求導(dǎo)法則;導(dǎo)數(shù)的應(yīng)用本章難點導(dǎo)數(shù)與微分的概念;復(fù)合函數(shù)的求導(dǎo)法則。導(dǎo)數(shù)的概念初等函數(shù)的導(dǎo)數(shù)與求導(dǎo)法則函數(shù)的微分及其應(yīng)用中值定理與導(dǎo)數(shù)的應(yīng)用'()dyfxdx?第2章導(dǎo)數(shù)與微分兩
2025-08-05 18:49
【摘要】第二章導(dǎo)數(shù)與微分習(xí)題課一、主要內(nèi)容二、典型例題求導(dǎo)法則基本公式導(dǎo)數(shù)xyx????0lim微分xydy???關(guān)系)(xodyydxydyydxdy??????????高階導(dǎo)數(shù)高階微分一、主要內(nèi)容1、導(dǎo)數(shù)的定義0
2025-07-20 19:21
【摘要】主要內(nèi)容典型例題第三章導(dǎo)數(shù)與微分習(xí)題課求導(dǎo)法則基本公式導(dǎo)數(shù)xyx????0lim微分dyyx???關(guān)系ddddd()yyyyxyyoxx??????????高階導(dǎo)數(shù)一、
2025-08-21 12:42
【摘要】高等數(shù)學(xué)練習(xí)題第二章導(dǎo)數(shù)與微分第一節(jié)導(dǎo)數(shù)概念一.填空題,則=2.若存在,=.=.,則(米),則物體在秒時的瞬時速度為5(米/秒)(,)處的切線方程為,法線方程為?或?表示在一點處函數(shù)極限存在、連續(xù)、可導(dǎo)、可微之間的關(guān)系,
2025-06-18 08:10
【摘要】DDY整理由方程所確定的與間的函數(shù)關(guān)系稱為隱函數(shù)。隱函數(shù)求導(dǎo)法:兩邊對求導(dǎo)(是的函數(shù))得到一個關(guān)于的方程,解出即可。例20求由方程所確定的隱函數(shù)的導(dǎo)數(shù)。解方程兩邊對求導(dǎo)例21求由方程所確定的隱函數(shù)的導(dǎo)數(shù)并求。解方程兩邊對求導(dǎo)?當(dāng)時,由方程解出例22設(shè)求。解原方程為等號兩邊
2025-07-22 20:24
【摘要】1§預(yù)備知識§多元函數(shù)的概念§偏導(dǎo)數(shù)§全微分及其應(yīng)用§多元復(fù)合函數(shù)的微分法§隱函數(shù)的微分法§二元函數(shù)的極值與最值第八章多元函數(shù)的微分法及其應(yīng)用(,)zfxy?2zbxy
2025-10-03 14:32
【摘要】西南科技大學(xué)理學(xué)院1第五講全微分方程與積分因子三、積分因子法一、全微分方程與原函數(shù)二、全微分方程判定定理與不定積分法四、小結(jié)西南科技大學(xué)理學(xué)院2定義:即(,)(,)(,)duxyMxydxNxydy??(
2025-10-07 21:13
【摘要】精品資源第十三章導(dǎo)數(shù)13、1導(dǎo)數(shù)的概念與和、差、積、商的導(dǎo)數(shù)【要點和目標(biāo)】.兩個函數(shù)的和、差、積、.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值.函數(shù)的最大值和最小值目標(biāo)?、帕私鈱?dǎo)數(shù)概念的某些實際背景(如瞬時速度,加速度,光滑曲線切線的斜率等);掌握函數(shù)在一點處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義;理解導(dǎo)函數(shù)的概念.⑵熟記基本導(dǎo)數(shù)公式(c,xm(m為有理數(shù)),,,,,,的導(dǎo)數(shù)
2025-04-17 00:39
【摘要】大學(xué)數(shù)學(xué)銀杏酒店管理學(xué)院第二章導(dǎo)數(shù)與微分大學(xué)數(shù)學(xué)銀杏酒店管理學(xué)院?教學(xué)內(nèi)容:導(dǎo)數(shù)的定義導(dǎo)數(shù)的幾何意義可導(dǎo)與連續(xù)的關(guān)系?教學(xué)要求
2025-07-25 04:26
【摘要】導(dǎo)數(shù)的概念導(dǎo)數(shù)的運算微分結(jié)束第2章導(dǎo)數(shù)與微分前頁結(jié)束后頁對于勻速直線運動來說,其速度公式為:?路程速度時間一物體作變速直線運動,物體的位置與時間00()()ssttst?????的函數(shù)關(guān)系為,稱為位置
2025-06-16 13:27