【摘要】范文范例指導(dǎo)參考高等數(shù)學(xué)練習(xí)題第二章導(dǎo)數(shù)與微分第一節(jié)導(dǎo)數(shù)概念一.填空題,則=2.若存在,=.=.,則(米),則物體在秒時(shí)的瞬時(shí)速度為5(米/秒)(,)處的切線方程為,法線方程為?或?
2025-07-26 05:40
【摘要】第2章導(dǎo)數(shù)與微分本章重點(diǎn)導(dǎo)數(shù)與微分的概念;基本初等函數(shù)的求導(dǎo)公式;求導(dǎo)法則;導(dǎo)數(shù)的應(yīng)用本章難點(diǎn)導(dǎo)數(shù)與微分的概念;復(fù)合函數(shù)的求導(dǎo)法則。導(dǎo)數(shù)的概念初等函數(shù)的導(dǎo)數(shù)與求導(dǎo)法則函數(shù)的微分及其應(yīng)用中值定理與導(dǎo)數(shù)的應(yīng)用'()dyfxdx?第2章導(dǎo)數(shù)與微分兩
2025-08-05 18:49
【摘要】主要內(nèi)容典型例題第三章導(dǎo)數(shù)與微分習(xí)題課求導(dǎo)法則基本公式導(dǎo)數(shù)xyx????0lim微分dyyx???關(guān)系ddddd()yyyyxyyoxx??????????高階導(dǎo)數(shù)一、
2025-08-21 12:42
【摘要】專轉(zhuǎn)本專題知識(shí)點(diǎn)----------一元函數(shù)的微分1.導(dǎo)數(shù)的概念“變速直線運(yùn)動(dòng)的瞬時(shí)速度”、“平面曲線的切線斜率”引出了對(duì)函數(shù)導(dǎo)數(shù)的思考設(shè)函數(shù)在點(diǎn)的某個(gè)鄰域內(nèi)有定義,當(dāng)自變量在處有增量時(shí),相應(yīng)地,函數(shù)取得增量,若極限存在,則稱函數(shù)在點(diǎn)處可導(dǎo),并稱此極限值為函數(shù)在點(diǎn)處的導(dǎo)數(shù)。記為,或,,即
2025-07-22 20:25
【摘要】....第四章 微分中值定理和導(dǎo)數(shù)的應(yīng)用 一、考核要求 Ⅰ知道羅爾定理成立的條件和結(jié)論,知道拉格朗日中值定理成立的條件和結(jié)論。 ?、蚰茏R(shí)別各種類型的未定式,并會(huì)用洛必達(dá)法則求它們的極限?! 、髸?huì)判別函數(shù)的單調(diào)性,會(huì)用單調(diào)性求函數(shù)的單調(diào)區(qū)間,并會(huì)利用函數(shù)的單調(diào)性證明簡(jiǎn)單的不等式。
2025-06-16 17:19
【摘要】第五章導(dǎo)數(shù)和微分§1導(dǎo)數(shù)的概念§2求導(dǎo)法則§3參變量函數(shù)的導(dǎo)數(shù)§4高階導(dǎo)數(shù)§5微分1、給出了導(dǎo)數(shù)的物理模型—瞬時(shí)速度和幾何模型—切線斜率。2、給出了函數(shù)在一點(diǎn)的導(dǎo)數(shù)(可導(dǎo))的定義和函數(shù)在一點(diǎn)的左、右導(dǎo)數(shù)的定義,以及函數(shù)在區(qū)間上可導(dǎo)的定義
2025-08-01 13:14
【摘要】第二章分析質(zhì)量的保證習(xí)題答案練習(xí)題答案1.修約與計(jì)算的順序問題?答:以前,在進(jìn)行比較復(fù)雜的計(jì)算時(shí),提倡的都是先修約后計(jì)算。因?yàn)楸A暨^多的數(shù)字位數(shù)使手工計(jì)算非常繁雜。先修約可以使計(jì)算簡(jiǎn)化,同時(shí)也不因舍掉任何不重要的數(shù)字而使準(zhǔn)確度受損。但是在實(shí)際的運(yùn)算前,修約的過程中就會(huì)遇到很多的問題。在計(jì)算機(jī)/計(jì)算器不普及的時(shí)代,使用先修約后計(jì)算的方法,可以很大程度的減少我們計(jì)算的強(qiáng)度,特別是遇到
2025-08-04 18:26
【摘要】1函數(shù)與導(dǎo)數(shù)一、選擇題1.已知f(x)=xlnx,若00',2)(xxf則?等于()A.2eB.e22D.ln22、設(shè)曲線y=ax-ln(x+1)在點(diǎn)(0,0)處的切線方程為y=2x,則a=()A.0
2024-11-22 02:46
【摘要】大學(xué)數(shù)學(xué)銀杏酒店管理學(xué)院第二章導(dǎo)數(shù)與微分大學(xué)數(shù)學(xué)銀杏酒店管理學(xué)院?教學(xué)內(nèi)容:導(dǎo)數(shù)的定義導(dǎo)數(shù)的幾何意義可導(dǎo)與連續(xù)的關(guān)系?教學(xué)要求
2025-07-25 04:26
【摘要】習(xí)題答案2p.582.在球面上,命,.對(duì)于赤道平面上的任意一點(diǎn),可以作為一的一條直線經(jīng)過兩點(diǎn),它與球面有唯一的交點(diǎn),記為.(1)證明:點(diǎn)的坐標(biāo)是,,,并且它給出了球面上去掉北極的剩余部分的正則參數(shù)表示;(2)求球面上去掉南極的剩余部分的類似的正則參數(shù)表示;(3)求上面兩種正則參數(shù)表示在公共部分的參數(shù)變換;(4)證明球面是可定向曲面.證明
2025-06-24 22:55
【摘要】習(xí)題2-41.求解下列微分方程:(1)yxxyy????22;解:令uxy?,則原方程化為uuudxdux????212,即xdxduuu???122,積分得:cxuuu??????ln1ln2111ln2還原變量并化簡(jiǎn)得:3)()(yxcxy???(2)
2025-01-10 04:03
【摘要】返回后頁前頁§8微分中值定理與導(dǎo)數(shù)的應(yīng)用二、典型例題一、內(nèi)容提要習(xí)題課返回后頁前頁一、內(nèi)容提要1.理解羅爾(Rolle)定理和拉格朗日(Lagrange)定理.2.了解柯西(Cauchy)定理和泰勒(Taylor)定理.3.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)
2025-04-29 06:27
【摘要】上頁下頁返回§二元函數(shù)的偏導(dǎo)數(shù)與全微分一、偏導(dǎo)數(shù)二、高階偏導(dǎo)數(shù)三、全微分上頁下頁返回一、偏導(dǎo)數(shù)定義1設(shè)函數(shù)(,)zfxy?在點(diǎn)00(,)xy的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?時(shí),相應(yīng)地函數(shù)有增量
2025-07-25 16:45
【摘要】Chapt5導(dǎo)數(shù)和微分15世紀(jì)文藝復(fù)興以后的歐洲,資本主義逐漸發(fā)展,采礦冶煉、機(jī)器發(fā)明、商業(yè)交往、槍炮制造、遠(yuǎn)洋航海、天象觀測(cè)等大量實(shí)際問題,給數(shù)學(xué)提出了前所未有的亟待解決的新課題。其中有兩類問題導(dǎo)致了導(dǎo)數(shù)概念的產(chǎn)生:(1)求變速運(yùn)動(dòng)的瞬時(shí)速度;(2)求曲線上一點(diǎn)處的切線。這兩類問題都?xì)w結(jié)為變量變化的快慢程度,即變化率問題。
2025-08-11 09:14
【摘要】第3章中值定理與導(dǎo)數(shù)的應(yīng)用內(nèi)容概要名稱主要內(nèi)容(、)中值定理名稱條件結(jié)論羅爾中值定理)(xfy?:(1)在][a,b上連續(xù);(2)在)(a,b內(nèi)可導(dǎo);(3))()(bfaf?至少存在一點(diǎn))(a,bξ?使得0)(/?ξf拉格朗日中值定理
2025-01-09 01:20