【摘要】第一篇:基本不等式練習(xí)題 重難點:了解基本不等式的證明過程;會用基本不等式解決簡單的最大(?。┲祮栴}.考綱要求:①了解基本不等式的證明過程. ②會用基本不等式解決簡單的最大(?。┲祮栴}.經(jīng)典例...
2024-10-29 01:07
【摘要】第一篇:基本不等式的教學(xué)設(shè)計 《基本不等式》教學(xué)設(shè)計 基本不等式 教材分析 本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和不等式性質(zhì),掌握了不等式性質(zhì)的基礎(chǔ)上展開的,作為重要的基本不等式之一,為后續(xù)的學(xué)習(xí)奠...
2024-10-24 17:31
【摘要】2abab??(0,0)ab??學(xué)習(xí)目標(biāo)?會用基本不等式證明一些簡單不等式;?會用基本不等式解決簡單的最值問題.(重點)如果a、b?R,那么a2+b2?2ab(當(dāng)且僅當(dāng)a=b時取“=”號)如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b
2024-11-12 17:13
【摘要】......新課標(biāo)人教A版高中數(shù)學(xué)必修五典題精講()典題精講例1(1)已知0<x<,求函數(shù)y=x(1-3x)的最大值;(2)求函數(shù)y=x+的值域.思路分析:(1)由極值定理,可知需構(gòu)造某個和為定值,可考慮把括號內(nèi)外x的系數(shù)變
2025-03-25 00:14
【摘要】第一篇:不等式3(基本不等式應(yīng)用與證明) 學(xué)習(xí)要求大成培訓(xùn)教案(不等式3基本不等式證明與應(yīng)用)基本不等式 ,,并掌握基本不等式中取等號的條件是:.算術(shù)平均數(shù):幾何平均數(shù) 2.設(shè)a≥0,b≥0則a...
2024-10-28 23:35
【摘要】基本不等式:授課人:祁玉瑞授課類型:新授課一、知識與技能:使學(xué)生了解基本不等式的代數(shù)、幾何背景,學(xué)會推導(dǎo)并掌握基本不等式,理解這個基本不等式的幾何意義,并掌握定理中的不等號“≥”取等號的條件是:當(dāng)且僅當(dāng)這兩個數(shù)相等;學(xué)會應(yīng)用基本不等式解決簡單的數(shù)學(xué)問題。過程與方法:通過探索基本不等式的過程,讓學(xué)生體會研究數(shù)學(xué)問題的基本思想方法,學(xué)會學(xué)習(xí),學(xué)會探究。情感態(tài)度與價值
2025-04-17 02:35
【摘要】基本不等式知識點總結(jié)向量不等式:【注意】:同向或有;反向或有;不共線.(這些和實數(shù)集中類似)代數(shù)不等式:同號或有;異號或有.絕對值不等式:雙向不等式:(左邊當(dāng)時取得等號,右邊當(dāng)時取得等號.)放縮不等式:①,則.【說明】:(,糖水的濃度問題).【拓展】:.②,,則;③,;④,.
2025-06-23 17:20
【摘要】......雙基自測1.(人教A版教材習(xí)題改編)函數(shù)y=x+(x>0)的值域為( ).A.(-∞,-2]∪[2,+∞) B.(0,+∞)C.[2,+∞) D.(2,+∞)2.下列不等式:①a2+1>2a;②≤2;③
2025-06-23 02:15
【摘要】......《基本不等式》教學(xué)設(shè)計張中華教材:人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)(A版)》必修5課題:基本不等式(第一課時)一、教材分析《基本不
【摘要】全方位教學(xué)輔導(dǎo)教案學(xué)科:數(shù)學(xué)任課教師:授課時間:2012年11月3日星期姓名性別女年
2025-04-17 13:03
【摘要】第一篇:基本不等式的證明教案 課題:基本不等式的證明(1) 斜橋中學(xué)肖劍 一、教材分析 不等式是高中的重點也是難點,而本節(jié)內(nèi)容又是該章的重中之重,是《考試說明》中八個C級考點之一?;静坏仁降?..
2024-10-27 19:03
【摘要】第一篇:基本不等式教學(xué)反思200711 “基本不等式”教學(xué)反思 周開芹 根據(jù)新課標(biāo)的要求,本節(jié)的重點是應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索基本不等式的證明過程,難點是用基本不等式求...
2024-10-25 17:23
【摘要】基本不等式??.,,,,并給出證明以定理的形式給出下面將它為了方便同學(xué)們學(xué)習(xí)不等式要重過學(xué)經(jīng)我們已Rbaabba???222.,,,,等號成立時且僅當(dāng)當(dāng)那么如果定理baabbaRba????2122??.,,,,成立等號時當(dāng)且僅當(dāng)所以時等號成立當(dāng)且僅因為證明bababaabb
2025-08-05 17:11
【摘要】菜單課后作業(yè)典例探究·提知能自主落實·固基礎(chǔ)高考體驗·明考情新課標(biāo)·文科數(shù)學(xué)(安徽專用)第四節(jié)基本不等式菜單課
2025-01-06 16:33
【摘要】基本不等式第2課時高一數(shù)學(xué)必修5第三章《不等式》利用求最值的要點:,,2abababR????(1)最值存在的條件的:一正,二定
2025-08-16 01:28