【摘要】課時作業(yè)(八)一、選擇題1.(2015·人大附中月考)焦點在x軸上,短軸長為8,離心率為的橢圓的標準方程是( )A.+=1 B.+=1C.+=1 D.+=1【解析】 本題考查橢圓的標準方程.由題意知2b=8,得b=4,所以b2=a2-c2=16,又e==,解得c=3,a=5,又焦點在x軸上,故橢圓的標準方程為+=1,故選C.【答案】 C2.
2025-03-25 04:51
【摘要】橢圓的簡單幾何性質(三)直線與圓有那些位置關系?如何判斷直線與圓的位置關系?提問:直線與橢圓有那些位置關系?如何判斷直線與橢圓的位置關系?探究一當m取何值時,直線l:y=x+m與橢圓C:9x2+16y2=144相離、相切、相交?該點的坐標。最小距離是多少?并求,到直線的距離最小?問橢圓上是否存在一
2024-11-18 01:22
【摘要】圖形相同點不同點方程焦點頂點準線ba2,2??短軸長長軸長222cba??)10(???eace離心率)0(12222????babyax)0(12222????babxay)0,()0,(21cFcF?),0(),0(21cFcF?),0
2024-11-18 15:25
【摘要】導標:首先,請同學們回憶一下:1、橢圓的定義是什么?2、橢圓的標準方程是什么?3、對應的橢圓圖形是怎樣?今天,我們將從橢圓的標準方程出發(fā),借助圖形來探求橢圓的一些幾何性質。達標:一、橢圓的范圍oxy由11122222222?????b
2024-11-18 15:24
【摘要】學習目標1、掌握橢圓的范圍、對稱性、頂點、離心率、理解a,b,c,e的幾何意義2、通過對橢圓標準方程的討論,理解在解析幾何中是怎樣用代數方法研究幾何問題的。3、初步利用橢圓的幾何性質解決問題。學習重點與難點學習重點:橢圓的幾何性質學習難點:橢圓的幾何性質的探討以及a,b,c,e的關系復習舊知(1)橢圓的定義:
2025-04-17 04:40
【摘要】橢圓的幾何性質練習:?已知橢圓的中心在原點,焦點在坐標軸上,離心率為,一條準線方程為y=3,求該橢圓的方程。例題1例題2例題3例題4練習:
2024-11-09 13:04
【摘要】12結構的幾何組成分析2幾何組成分析的目的、幾何不變體系和幾何可變體系自由度和約束的概念體系的計算自由度公式幾何不變無多余約束的平面桿件體系的幾何組成規(guī)則幾何組成分析舉例結構幾何組成和靜定性的關系3幾何組成分析的目的、幾何不變體系和幾何可變體系
2025-08-04 07:51
【摘要】復習::平面內到兩定點F1、F2的距離之和為常數(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當焦點在X軸上時當焦點在Y軸上時)0(12222????babyax)0(12222???
2025-07-25 14:44
【摘要】橢圓的標準方程和幾何性質練習題一1.若曲線ax2+by2=1為焦點在x軸上的橢圓,則實數a,b滿足( )A.a2b2B.0,所以0ab.2.一個橢圓中心在原點,焦點F1,
2025-07-15 02:23
【摘要】幾何性質(二)1.橢圓的長軸長為,短軸長為,半焦距為,離心率為,焦點坐標為,頂點坐標為.復習導入:81922??yx1.橢圓的長軸長為,短軸長為,半焦距為,離心率為
2025-01-06 14:41
【摘要】一.課題:橢圓的幾何性質(1)二.教學目標:(對稱性、范圍、頂點、離心率);。三.教學重、難點:目標1;數形結合思想的貫徹,運用曲線方程研究幾何性質。四.教學過程:(一)復習:1.橢圓的標準方程。(二)新課講解:1.范圍:由標準方程知,橢圓上點的坐標滿足不等式,∴,,∴,,說明橢圓位于直線,所圍成的矩形里。2
2024-10-04 14:03
【摘要】學習重點:1.掌握橢圓的定義、方程及標準方程的推導;2.掌握焦點、焦點位置與方程關系、焦距。學習難點:橢圓標準方程的建立和推導。一課前自主預習P與兩個定點F1、F2的距離的和等于常數(大于|F1F2|),那么動點的軌跡是_________.___________________________,其中分母的大小決定了
2024-11-19 05:51
【摘要】橢圓的簡單幾何性質典型例題一例1橢圓的一個頂點為,其長軸長是短軸長的2倍,求橢圓的標準方程.分析:題目沒有指出焦點的位置,要考慮兩種位置.解:(1)當為長軸端點時,,,橢圓的標準方程為:;(2)當為短軸端點時,,,橢圓的標準方程為:;說明:橢圓的標準方程有兩個,給出一個頂點的坐標和對稱軸的位置,是不能確定橢圓的橫豎的,因而要考慮兩種情況.典型例
2025-07-23 06:44
【摘要】江蘇省漣水縣第一中學高中數學橢圓的幾何性質(2)教學案蘇教版選修1-1教學目標:1.進一步熟悉橢圓的基本幾何性質:范圍、對稱性、頂點、長軸、短軸,研究并理解橢圓的離心率的概念.來2.掌握橢圓標準方程中a,b,c,e的幾何意義及相互關系.教學重點:橢圓的幾何性質——范圍、對稱性、頂點、離心率.教學難點:
2024-11-20 00:31
【摘要】雙曲線的簡單幾何性質(二)取值范圍。的,求率為一象限的那條漸近線斜,設該雙曲線過第,的離心率,已知雙曲線kkebabyax]22[)00(2222?????的方程,求直線若兩點,于交的直線與斜率為雙曲線Lyx4|AB|.BAL212322???.22的取
2024-10-19 13:09