【摘要】課時(shí)作業(yè)(八)一、選擇題1.(2015·人大附中月考)焦點(diǎn)在x軸上,短軸長為8,離心率為的橢圓的標(biāo)準(zhǔn)方程是( )A.+=1 B.+=1C.+=1 D.+=1【解析】 本題考查橢圓的標(biāo)準(zhǔn)方程.由題意知2b=8,得b=4,所以b2=a2-c2=16,又e==,解得c=3,a=5,又焦點(diǎn)在x軸上,故橢圓的標(biāo)準(zhǔn)方程為+=1,故選C.【答案】 C2.
2025-03-25 04:51
【摘要】橢圓的簡(jiǎn)單幾何性質(zhì)(三)直線與圓有那些位置關(guān)系?如何判斷直線與圓的位置關(guān)系?提問:直線與橢圓有那些位置關(guān)系?如何判斷直線與橢圓的位置關(guān)系?探究一當(dāng)m取何值時(shí),直線l:y=x+m與橢圓C:9x2+16y2=144相離、相切、相交?該點(diǎn)的坐標(biāo)。最小距離是多少?并求,到直線的距離最???問橢圓上是否存在一
2024-11-18 01:22
【摘要】圖形相同點(diǎn)不同點(diǎn)方程焦點(diǎn)頂點(diǎn)準(zhǔn)線ba2,2??短軸長長軸長222cba??)10(???eace離心率)0(12222????babyax)0(12222????babxay)0,()0,(21cFcF?),0(),0(21cFcF?),0
2024-11-18 15:25
【摘要】導(dǎo)標(biāo):首先,請(qǐng)同學(xué)們回憶一下:1、橢圓的定義是什么?2、橢圓的標(biāo)準(zhǔn)方程是什么?3、對(duì)應(yīng)的橢圓圖形是怎樣?今天,我們將從橢圓的標(biāo)準(zhǔn)方程出發(fā),借助圖形來探求橢圓的一些幾何性質(zhì)。達(dá)標(biāo):一、橢圓的范圍oxy由11122222222?????b
2024-11-18 15:24
【摘要】學(xué)習(xí)目標(biāo)1、掌握橢圓的范圍、對(duì)稱性、頂點(diǎn)、離心率、理解a,b,c,e的幾何意義2、通過對(duì)橢圓標(biāo)準(zhǔn)方程的討論,理解在解析幾何中是怎樣用代數(shù)方法研究幾何問題的。3、初步利用橢圓的幾何性質(zhì)解決問題。學(xué)習(xí)重點(diǎn)與難點(diǎn)學(xué)習(xí)重點(diǎn):橢圓的幾何性質(zhì)學(xué)習(xí)難點(diǎn):橢圓的幾何性質(zhì)的探討以及a,b,c,e的關(guān)系復(fù)習(xí)舊知(1)橢圓的定義:
2025-04-17 04:40
【摘要】橢圓的幾何性質(zhì)練習(xí):?已知橢圓的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,離心率為,一條準(zhǔn)線方程為y=3,求該橢圓的方程。例題1例題2例題3例題4練習(xí):
2024-11-09 13:04
【摘要】12結(jié)構(gòu)的幾何組成分析2幾何組成分析的目的、幾何不變體系和幾何可變體系自由度和約束的概念體系的計(jì)算自由度公式幾何不變無多余約束的平面桿件體系的幾何組成規(guī)則幾何組成分析舉例結(jié)構(gòu)幾何組成和靜定性的關(guān)系3幾何組成分析的目的、幾何不變體系和幾何可變體系
2024-08-13 07:51
【摘要】復(fù)習(xí)::平面內(nèi)到兩定點(diǎn)F1、F2的距離之和為常數(shù)(大于|F1F2|)的動(dòng)點(diǎn)的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當(dāng)焦點(diǎn)在X軸上時(shí)當(dāng)焦點(diǎn)在Y軸上時(shí))0(12222????babyax)0(12222???
2024-08-03 14:44
【摘要】橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)練習(xí)題一1.若曲線ax2+by2=1為焦點(diǎn)在x軸上的橢圓,則實(shí)數(shù)a,b滿足( )A.a(chǎn)2b2B.0,所以0ab.2.一個(gè)橢圓中心在原點(diǎn),焦點(diǎn)F1,
2024-07-24 02:23
【摘要】幾何性質(zhì)(二)1.橢圓的長軸長為,短軸長為,半焦距為,離心率為,焦點(diǎn)坐標(biāo)為,頂點(diǎn)坐標(biāo)為.復(fù)習(xí)導(dǎo)入:81922??yx1.橢圓的長軸長為,短軸長為,半焦距為,離心率為
2025-01-06 14:41
【摘要】一.課題:橢圓的幾何性質(zhì)(1)二.教學(xué)目標(biāo):(對(duì)稱性、范圍、頂點(diǎn)、離心率);。三.教學(xué)重、難點(diǎn):目標(biāo)1;數(shù)形結(jié)合思想的貫徹,運(yùn)用曲線方程研究幾何性質(zhì)。四.教學(xué)過程:(一)復(fù)習(xí):1.橢圓的標(biāo)準(zhǔn)方程。(二)新課講解:1.范圍:由標(biāo)準(zhǔn)方程知,橢圓上點(diǎn)的坐標(biāo)滿足不等式,∴,,∴,,說明橢圓位于直線,所圍成的矩形里。2
2024-10-04 14:03
【摘要】學(xué)習(xí)重點(diǎn):1.掌握橢圓的定義、方程及標(biāo)準(zhǔn)方程的推導(dǎo);2.掌握焦點(diǎn)、焦點(diǎn)位置與方程關(guān)系、焦距。學(xué)習(xí)難點(diǎn):橢圓標(biāo)準(zhǔn)方程的建立和推導(dǎo)。一課前自主預(yù)習(xí)P與兩個(gè)定點(diǎn)F1、F2的距離的和等于常數(shù)(大于|F1F2|),那么動(dòng)點(diǎn)的軌跡是_________.___________________________,其中分母的大小決定了
2024-11-19 05:51
【摘要】橢圓的簡(jiǎn)單幾何性質(zhì)典型例題一例1橢圓的一個(gè)頂點(diǎn)為,其長軸長是短軸長的2倍,求橢圓的標(biāo)準(zhǔn)方程.分析:題目沒有指出焦點(diǎn)的位置,要考慮兩種位置.解:(1)當(dāng)為長軸端點(diǎn)時(shí),,,橢圓的標(biāo)準(zhǔn)方程為:;(2)當(dāng)為短軸端點(diǎn)時(shí),,,橢圓的標(biāo)準(zhǔn)方程為:;說明:橢圓的標(biāo)準(zhǔn)方程有兩個(gè),給出一個(gè)頂點(diǎn)的坐標(biāo)和對(duì)稱軸的位置,是不能確定橢圓的橫豎的,因而要考慮兩種情況.典型例
2024-08-01 06:44
【摘要】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)橢圓的幾何性質(zhì)(2)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):1.進(jìn)一步熟悉橢圓的基本幾何性質(zhì):范圍、對(duì)稱性、頂點(diǎn)、長軸、短軸,研究并理解橢圓的離心率的概念.來2.掌握橢圓標(biāo)準(zhǔn)方程中a,b,c,e的幾何意義及相互關(guān)系.教學(xué)重點(diǎn):橢圓的幾何性質(zhì)——范圍、對(duì)稱性、頂點(diǎn)、離心率.教學(xué)難點(diǎn):
2024-11-20 00:31
【摘要】雙曲線的簡(jiǎn)單幾何性質(zhì)(二)取值范圍。的,求率為一象限的那條漸近線斜,設(shè)該雙曲線過第,的離心率,已知雙曲線kkebabyax]22[)00(2222?????的方程,求直線若兩點(diǎn),于交的直線與斜率為雙曲線Lyx4|AB|.BAL212322???.22的取
2024-10-19 13:09