【摘要】第一節(jié)橢圓的標準方程考點一求橢圓的標準方程【思路點撥】先判斷焦點位置,確定出適合題意的橢圓標準方程的形式,最后由條件確定出a和b即可.【例1】求適合下列條件的橢圓的標準方程:(1)兩個焦點的坐標分別為(-4,0)和(4,0),且橢圓經(jīng)過點(5,0);(2)焦點在y軸上,且經(jīng)過兩個點(0,2)和(1,0)。變∶根據(jù)下列條件,求橢圓
2025-07-15 02:23
【摘要】課題:橢圓的定義及幾何性質(zhì)汝城一中高三文科數(shù)學組(1)橢圓的第一定義為:平面內(nèi)與兩個定點F1、F2的距離之和為常數(shù)(大于|F1F2|)(2)橢圓的第二定義為:平面內(nèi)到一定點F與到一定直線l的距離之比為一常數(shù)e(0<e<1)的點的軌跡叫做橢圓一、基礎(chǔ)知識復習標準方程
2024-11-09 06:05
【摘要】1.已知函數(shù)f(x)=ax2+bx+c(a≠0)是偶函數(shù),那么g(x)=ax3+bx2+cx( ?。 .奇函數(shù) B.偶函數(shù) C.既奇又偶函數(shù) D.非奇非偶函數(shù)2.已知函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),在(0,+∞)上單調(diào)遞減,21Oyx且f>0>f(-),則方程f(x)=0的根的個數(shù)為(A.0 B.1
2025-03-24 12:18
【摘要】一.教學內(nèi)容:??????橢圓的幾何性質(zhì)?二.教學目標:通過橢圓標準方程的討論,使學生掌握橢圓的幾何性質(zhì),能正確地畫出橢圓的圖形,并了解橢圓的一些實際應用.通過對橢圓的幾何性質(zhì)的教學,培養(yǎng)學生分析問題和解決實際問題的能力.使學生掌握利用方程研究曲線性質(zhì)的基本方法,加深對直角坐標系中曲線與方程的
2025-07-23 11:21
【摘要】精品資源解析幾何練習題1、對于每個正自然數(shù)n拋物線與軸交于、兩點,以表示該兩點間的距離,則的值是(?。?A、 B、 C、 D、2、橢圓和雙曲線的公共焦點為F1、F2,P是兩曲線的一個交點,則的值是( ?。?A、 B、 C、 D、3、如右圖ABCD是直角梯形,AB=4,BC=3,AD=2,AD//BC,,一曲線M過C點且曲線上任意一點到A、B的距離之
2025-03-25 07:47
【摘要】幾何性質(zhì)(二)1.橢圓的長軸長為,短軸長為,半焦距為,離心率為,焦點坐標為,頂點坐標為.復習導入:81922??yx1.橢圓的長軸長為,短軸長為,半焦距為,離心率為
2025-01-06 14:41
【摘要】復習::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當焦點在X軸上時當焦點在Y軸上時)0(12222????babyax)0(12222
2024-11-17 19:25
【摘要】橢圓的離心率專題訓練一.選擇題(共29小題)1.橢圓的左右焦點分別為F1,F(xiàn)2,若橢圓C上恰好有6個不同的點P,使得△F1F2P為等腰三角形,則橢圓C的離心率的取值范圍是( )A. B. C. D. 2.在區(qū)間[1,5]和[2,4]分別取一個數(shù),記為a,b,則方程表示焦點在x軸上且離心率小于的橢圓的概率為( ?。〢. B. C. D. 3.已知橢圓(a>b>0)上一點A
2025-04-17 04:41
【摘要】第一篇:幾何證明練習題 幾何證明 1、已知:在⊿ABC中,AB=AC,延長AB到D,使AB=BD,E是AB的中點。求證:CD=2CE。 C2、已知:在⊿ABC中,作∠FBC=∠ECB= 2∠A...
2024-10-14 01:01
【摘要】橢圓的幾何性質(zhì)知識回顧1F2Fxyo...M(x,y)(-c,0)(c,0)F1(0,-c)F2(0,c)xy0M(x,y)...12222??byax橢圓的標準方程:12222??bxay焦點在x軸時焦點
2025-07-25 10:43
【摘要】橢圓方程及幾何性質(zhì)基礎(chǔ)知識梳理1.橢圓的定義(1)平面內(nèi)一點P與兩定點F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡,即若常數(shù)等于|F1F2|,則軌跡是.若常數(shù)小于|F1F2|,則軌跡
2025-04-29 12:12
【摘要】復習思考?橢圓的定義、標準方程是什么??平面上到兩個定點的距離的和(2a)等于定長(大于|F1F2|)的點的軌跡叫橢圓。?定點F1、F2叫做橢圓的焦點。?兩焦點之間的距離叫做焦距(2C)。)0(12222????babyax)0(12222????bab
2025-07-25 15:26
【摘要】學習重點:1.掌握橢圓的定義、方程及標準方程的推導;2.掌握焦點、焦點位置與方程關(guān)系、焦距。學習難點:橢圓標準方程的建立和推導。一課前自主預習P與兩個定點F1、F2的距離的和等于常數(shù)(大于|F1F2|),那么動點的軌跡是_________.___________________________,其中分母的大小決定了
2024-11-19 05:51
【摘要】(一)教學目標:橢圓的范圍、對稱性、對稱中心、離心率及頂點(截距).重點難點分析教學重點:橢圓的簡單幾何性質(zhì).教學難點:橢圓的簡單幾何性質(zhì).教學設計:【復習引入】1.橢圓的定義是什么?2.橢圓的標準方程是什么?【講授新課】利用橢圓的標準方程研究橢圓的幾何性質(zhì).以焦點在x軸上橢圓為例
2024-11-26 18:45
【摘要】切線的性質(zhì)與判定練習題班級姓名例1、已知:如圖,同心圓O,大圓的弦AB=CD,且AB是小圓的切線,切點為E.求證:CD是小圓的切線.例2、已知如圖所示,AB為⊙O的直徑,C、D是直徑AB同側(cè)圓周上兩點,且,過D作DE⊥AC于點E,求證:DE是⊙O的切線.
2025-03-24 12:27