【摘要】橢圓的幾何性質(zhì)1課題第1課時(shí)計(jì)劃上課日期:教學(xué)目標(biāo)[知識(shí)與技能1.掌握橢圓的基本幾何性質(zhì):范圍、對(duì)稱性、頂點(diǎn)、長(zhǎng)軸、短軸.2.感受如何運(yùn)用方程研究曲線的幾何性質(zhì)過(guò)程與方法情感態(tài)度與價(jià)值觀教學(xué)重難點(diǎn)橢圓的幾何性質(zhì)——范圍、對(duì)稱性、頂點(diǎn)教學(xué)流程\內(nèi)容\板
2024-11-20 00:30
【摘要】結(jié)構(gòu)力學(xué)STRUCTUREMECHANICS西南科技大學(xué)環(huán)資學(xué)院交通工程系基本要求:了解幾何不變體系、幾何可變體系、瞬變體系和剛片、約束、自由度等概念;了解平面體系的自由度計(jì)算公式、靜定與超靜定結(jié)構(gòu)的組成特點(diǎn),掌握平面幾何不變體系的基本組成規(guī)則及其應(yīng)用。教學(xué)內(nèi)容:
2025-08-04 07:35
【摘要】22194xy??共焦點(diǎn),且過(guò)點(diǎn)(3,-2)的橢圓方程。分析:先確定焦點(diǎn)在哪個(gè)坐標(biāo)軸另解:設(shè)橢圓的方程為221(4)94xy?????????則,點(diǎn)(3,-2)代入得6,(6)?????舍去故所求方程為2211510xy??求橢圓的方程12(6,1),(3,2),??
2025-07-25 10:46
【摘要】第2課時(shí)橢圓方程及性質(zhì)的應(yīng)用【題型示范】類型一直線與橢圓的位置關(guān)系【典例1】(1)若直線y=kx+1與焦點(diǎn)在x軸上的橢圓總有公共點(diǎn),則m的取值范圍為_(kāi)_______.(2)判斷直線l:和橢圓2x2+3y2=6是否有公共點(diǎn)
2025-08-05 09:10
【摘要】一、范圍二、對(duì)稱性三、頂點(diǎn)四、離心率1、長(zhǎng)軸、短軸2、離心率3、焦點(diǎn)4、頂點(diǎn)5、c2=a2-b2方程范圍對(duì)稱性軸對(duì)稱,中心對(duì)稱軸對(duì)稱,中心對(duì)稱頂點(diǎn)(a,0)(-a,0)(0,b)(0,-b)(b,0)(-b,0)(0,a)(0,-a)離心率e=a/c
2025-08-05 20:16
【摘要】《橢圓的幾何性質(zhì)》教學(xué)目標(biāo)?知識(shí)與技能目標(biāo)?了解用方程的方法研究圖形的對(duì)稱性;理解橢圓的范圍、對(duì)稱性及對(duì)稱軸,對(duì)稱中心、離心率、頂點(diǎn)的概念;掌握橢圓的標(biāo)準(zhǔn)方程、會(huì)用橢圓的定義解決實(shí)際問(wèn)題;通過(guò)例題了解橢圓的第二定義,準(zhǔn)線及焦半徑的概念,利用信息技術(shù)初步了解橢圓的第二定義.?過(guò)程與方法目標(biāo)?(1)復(fù)習(xí)與引入過(guò)程
2025-07-24 18:14