【摘要】《平面解析幾何初步》單元測試卷一、選擇題:在每小題給出的四個選項中,只有一項符合題目要求(本大題共12小題,每小題5分,共60分).1.(原創(chuàng))已知點,,則直線AB的傾斜角為()A. B.C.D.1.【答案】D,【解析】因為直線AB的斜率為,所以直線AB的傾斜角為,選D.2.(原創(chuàng))若直線經(jīng)過圓C:的圓心,則實數(shù)的值為()A.0
2025-03-25 01:25
【摘要】第三章一、直線的傾斜角與斜率1、傾斜角的概念:(1)傾斜角:當(dāng)直線與x軸相交時,取x軸作為基準(zhǔn),x軸正向與直線向上方向之間所成的角a叫做直線的傾斜角。(2)傾斜角的范圍:當(dāng)與x軸平行或重合時,規(guī)定它的傾斜角a為0°因此0°≤a<180°。2、直線的斜率(1)斜率公式:K=tana(a≠90°)(2)斜率坐標(biāo)公式:K
2025-08-05 18:34
【摘要】圓錐曲線一、選擇題1、(2009全國卷Ⅱ文)雙曲線的漸近線與圓相切,則r= 2、(2009浙江文)已知橢圓的左焦點為,右頂點為,點在橢圓上,且軸,直線交軸于點.若,則橢圓的離心率是 3、(2009江西卷文)設(shè)和為雙曲線()的兩個焦點,若,是正三角形的三個頂點,則雙曲線的離心率為 4、(2009山東卷文)設(shè)斜率為2的直線過拋物線的
2025-04-09 06:45
【摘要】2012高考數(shù)學(xué)文科平面解析幾何匯總一·選擇題1.(廣東)在平面直角坐標(biāo)系中,直線與圓相交于、兩點,則弦的長等于A.B.C.D.2.(湖南)已知雙曲線C:-=1的焦距為10,點P(2,1)在C的漸近線上,則C的方程為A.-=1=1=1=13.(遼寧)已知P,Q為拋物線上兩點,點P,Q的橫坐標(biāo)
2025-01-14 13:45
【摘要】第一篇:直線、圓的位置關(guān)系(教案) 響水二中高三數(shù)學(xué)(理)一輪復(fù)習(xí) 教案第九編解析幾何主備人張靈芝總第46期 §直線、圓的位置關(guān)系 基礎(chǔ)自測 +by=1與圓x+y=1相交,則P(a,b)在圓...
2024-10-29 05:26
【摘要】..一、直線與方程基礎(chǔ):1、直線的傾斜角:αα 2、直線的斜率:;注意:傾斜角為90°的直線的斜率不存在。3、直線方程的五種形式:①點斜式:;②斜截式:;③一般式:;④截距式:;⑤兩點式:注意:各種形式的直線方程所能表示和不能表示的直線。4、兩直線平行
2025-08-05 15:43
【摘要】........解析幾何中的定點定值問題考綱解讀:定點定值問題是解析幾何解答題的考查重點。此類問題定中有動,動中有定,并且常與軌跡問題,曲線系問題等相結(jié)合,深入考查直線的圓,圓錐曲線,直線和圓錐曲線位置關(guān)系等相關(guān)知識??疾閿?shù)形結(jié)合,分類討論,化歸與轉(zhuǎn)化,函數(shù)和方
2025-03-25 07:47
【摘要】《解析幾何》課程教學(xué)大綱課程名稱(英文):解析幾何(Analyticgeometry)課程編碼:B20211010課程類別:專業(yè)基礎(chǔ)課學(xué)時:40學(xué)分:考核方式:考試適用對象:信息與計算科學(xué)本科專業(yè)一、課程性質(zhì)、目的與任務(wù):《解析幾何》是信息與計算科學(xué)專業(yè)的一門專業(yè)基礎(chǔ)課。解析幾何的基本思想是用代數(shù)方法研究幾何問題。通過本課程的學(xué)習(xí),使學(xué)生
2025-01-18 04:55
【摘要】練習(xí)7-1 練習(xí)7-2 練習(xí)7-3
2025-01-14 12:03
【摘要】1平面解析幾何高考研究及應(yīng)考策略考綱分析:(文、理相同)①在平面直角坐標(biāo)系中,結(jié)合具體圖形,確定直線位置的幾何要素。②理解直線的傾斜角和斜率的概念,掌握過兩點的直線斜率的計算公式③能根據(jù)兩條直線的斜率判定這兩條直線平行或垂直④掌握確定直線位置的幾何要素,掌握直線方程的幾種形式(點斜式、兩點式及一般式),
2025-01-10 04:35
【摘要】海豚教育個性化簡案學(xué)生姓名:年級:科目:授課日期:月日上課時間:時分------時分合計:小時教學(xué)目標(biāo)1.掌握兩條直線平行和垂直的條件,掌握兩條直線所成的角和點到直線的距離公式;2.能夠根據(jù)直線的方程
2025-06-22 16:55
【摘要】精品資源解析幾何中的不等式產(chǎn)生方案解析幾何中有一類題,需要依據(jù)題目特點建立不等式,然后才能求解,不等式的產(chǎn)生方法有一定的技術(shù)性,最常見的有下列幾種:一、結(jié)合定義、圓錐曲線的光學(xué)性質(zhì),利用圖形中幾何量之間的大小關(guān)系(如三角形兩邊之差(和)不大(小)于第三邊)產(chǎn)生不等式.圖1PF2F1yxONM例1:中心在原點,焦
2025-05-04 18:26
【摘要】........解析幾何中的定值定點問題(一)一、定點問題【例1】.已知橢圓:的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.⑴求橢圓C的方程;⑵設(shè),、是橢圓上關(guān)于軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,求直線的斜率的取值范圍;
【摘要】蘇州分公司金閶校區(qū)數(shù)學(xué)組XueDaPersonalizedEducationDevelopmentCenter專題:解析幾何中的動點軌跡問題學(xué)大蘇分教研中心周坤軌跡方程的探求是解析幾何中的基本問題之一,也是近幾年各省高考中的常見題型之一。解答這類問題,需要善于揭示問題的內(nèi)部規(guī)律及知識之間的相互聯(lián)系。本專題分成四個部分,首先從題目類型出發(fā),總結(jié)常見的幾類動點軌跡問
2025-03-24 05:55
【摘要】2012年高三二模匯編——解析幾何1、填空題(2012徐匯、松江二模理14)如圖,點是雙曲線上的動點,是雙曲線的焦點,是的平分線上一點,且.某同學(xué)用以下方法研究:延長交于點,可知為等腰三角形,且為的中點,得.類似地:是橢圓上的動點,是橢圓的焦點,是的平分線上一點,且,則的取值范圍是.(2012浦東新區(qū)二模理1)
2025-08-04 16:11