【摘要】1.設(shè)P是橢圓+=1上的點,若F1,F(xiàn)2是橢圓的兩個焦點,則|PF1|+|PF2|等于( )A.4 B.5C.8 D.10答案:D2.橢圓+=1的焦點坐標(biāo)是( )A.(±4,0) B.(0,±4)C.(±3,0) D.(0,±3)答案:D3.已知橢圓的兩個焦點為F1(-1,0),F(xiàn)2(
2025-07-23 20:57
【摘要】圓錐曲線與射影幾何射影幾何是幾何學(xué)的重要內(nèi)容,射影幾何中的一些重要定理和結(jié)論往往能運用在歐式幾何中,有利于我們的解題。在這里,我們將對解析幾何中一些常見的圓錐曲線問題進(jìn)行總結(jié),并給中一些較為方便的解法。例1:設(shè)點,D在雙曲線的左支上,,直線交雙曲線的右支于點。求證:直線與直線的交點在直線上。如果是用解析幾何的做法,這將是非常
2025-06-22 15:55
【摘要】圓錐曲線一、知識點1、曲線和方程2、橢圓定義(第一定義、第二定義)3、橢圓標(biāo)準(zhǔn)方程(1、2)與參數(shù)方程4、橢圓性質(zhì):圖像特點、范圍、頂點、離心率、對稱性、準(zhǔn)線、焦半徑、通徑等5、橢圓與直線的位置關(guān)系二、雙曲線1、定義(第一、第二定義)2、標(biāo)準(zhǔn)方程3、性質(zhì)“圖像、范圍、頂點、離心率、對稱性、準(zhǔn)線、漸近線、焦半徑、通徑等4、雙曲線與直
【摘要】 圓錐曲線的定義、方程與性質(zhì)]1.設(shè)拋物線的頂點在原點,準(zhǔn)線方程為x=-2,則拋物線的方程是( )A.y2=-8xB.y2=8xC.y2=-4xD.y2=4x2.橢圓+=1的離心率為( )A.B.C.D.3.雙曲線2x2-y2=8的實軸長是( )A.2B.2C.4D.44.過拋物線y2=2px(p0)的焦點F的直
【摘要】知識點1、直線和圓錐曲線位置關(guān)系的判斷2、與弦長有關(guān)的問題一、直線與圓錐曲線位置關(guān)系的判斷除直線和圓的位置關(guān)系外,一般都用代數(shù)法,通過方程組解的個數(shù)判斷直線和曲線的位置關(guān)系。(1)△>0方程有兩個不等的實數(shù)根直線與曲線有兩個不同的交點直線和曲線相交(2)△=0方程有兩個相等的實數(shù)根直線與曲線有
2025-05-01 22:17
【摘要】把直線方程代入圓的方程得到一元二次方程計算判別式?0,相交?=0,相切?0,相離[1]判斷直線與橢圓位置關(guān)系的根本方法是解直線方程和橢圓方程組成的方程組[2]把直線方程代入橢圓方程后,若一元二次方程好解,則應(yīng)解方程;若一元二次方程不好解,
2025-10-31 12:55
【摘要】圓錐曲線的應(yīng)用高三備課組一、基本知識概要:解析幾何在日常生活中應(yīng)用廣泛,如何把實際問題轉(zhuǎn)化為數(shù)學(xué)問題是解決應(yīng)用題的關(guān)鍵,而建立數(shù)學(xué)模型是實現(xiàn)應(yīng)用問題向數(shù)學(xué)問題轉(zhuǎn)化的常用常用方法。本節(jié)主要通過圓錐曲線在實際問題中的應(yīng)用,說明數(shù)學(xué)建模的方法,理解函數(shù)與方程、等價轉(zhuǎn)化、分類討論等數(shù)學(xué)思想。二、例題:例題1:設(shè)有一顆慧星沿一橢圓軌道
2025-10-31 08:48
【摘要】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件79《圓錐曲線-圓錐曲線的應(yīng)用》圓錐曲線定義應(yīng)用第1課時一、基本知識概要:·涉及圓錐曲線上的點與兩個焦點構(gòu)成的三角形,常用第一定義結(jié)合正余弦定理;·涉及焦點、準(zhǔn)線、圓錐曲線上的點,常用統(tǒng)一的定義。橢圓的定義:點集M={P||PF1
2025-11-02 08:49
【摘要】直線與圓錐曲線的位置關(guān)系問題是圓錐曲線的重點和難點,也是每年高考的熱點,其解答過程具有很強(qiáng)的綜合性、復(fù)雜性和規(guī)律性。解答此類問題需要把握弦長公式,中點坐標(biāo)公式,圓錐曲線的簡單幾何性質(zhì),韋達(dá)定理的運用,以及轉(zhuǎn)化與化歸思想及其應(yīng)用.已知直線和圓錐曲線的方程,如何判斷直線與圓錐曲線的位置關(guān)系?直線與
2025-07-23 12:45
【摘要】圓錐曲線的綜合問題直線和圓錐曲線問題解法的一般規(guī)律“聯(lián)立方程求交點,根與系數(shù)的關(guān)系求弦長,根的分布找范圍,曲線定義不能忘”.【一】.直線與圓錐曲線的位置關(guān)系(1)從幾何角度看,可分為三類:無公共點,僅有一個公共點及有兩個相異的公共點.(2)從代數(shù)角度看,可通過將表示直線的方程代入二次曲線的方程消元后所得一元二次方程解的情況來判斷.+By+C=0,圓錐曲線方程f(x,
2025-07-25 00:13
【摘要】 高三數(shù)學(xué)第一輪復(fù)習(xí)講義(小結(jié)) 圓錐曲線 一.課前預(yù)習(xí): 1.設(shè)拋物線,線段的兩個端點在拋物線上,且,那么線段的中點到軸的最短距離是 ( ) ...
2025-04-03 03:26
【摘要】解析幾何專題·經(jīng)典結(jié)論收集整理:宋氏資料2016-1-1有關(guān)解析幾何的經(jīng)典神級結(jié)論一、橢圓1.點處的切線平分在點處的外角.(橢圓的光學(xué)性質(zhì))2.平分在點處的外角,則焦點在直線上的射影點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.(中位線)3.以焦點弦為直徑的圓必與對應(yīng)準(zhǔn)線相離.(第二定義)4.以焦點半徑為直徑的圓必與以長軸為直徑
2025-08-05 04:54
【摘要】山東高考解析幾何題的推廣及背景溯源2011年高考山東理科第22題,是一道以橢圓為背景考查定值問題、最值問題和存在性問題的解析幾何壓軸題,重點考查推理運算能力和數(shù)學(xué)綜合素質(zhì)。本文筆者嘗試對該題的結(jié)論作一般化推廣,并對其背景作深度挖掘和溯源解析,與讀者交流。?題目已知直線與橢圓交于兩不同點,且面積,其中為坐標(biāo)原點。(Ⅰ)證明和均為定值;(Ⅱ)設(shè)線段的中點為,求的最大值;(Ⅲ)
2025-07-25 00:15
【摘要】二 圓錐曲線的參數(shù)方程[學(xué)習(xí)目標(biāo)].、拋物線的參數(shù)方程.、有關(guān)點的軌跡問題.[知識鏈接],參數(shù)φ是OM的旋轉(zhuǎn)角嗎?提示 橢圓的參數(shù)方程(φ為參數(shù))中的參數(shù)φ不是動點M(x,y)的旋轉(zhuǎn)角,它是點M所對應(yīng)的圓的半徑OA(或OB)的旋轉(zhuǎn)角,稱為離心角,不是OM的旋轉(zhuǎn)角.,參數(shù)φ的三角函數(shù)secφ的意義是什么?提示 secφ=,其中φ∈[0,2π)且φ≠,φ≠
2025-08-05 04:45
【摘要】WORD資料可編輯圓錐曲線光學(xué)性質(zhì)的證明及應(yīng)用初探一、圓錐曲線的光學(xué)性質(zhì)1.1 橢圓的光學(xué)性質(zhì):從橢圓一個焦點發(fā)出的光,經(jīng)過橢圓反射后,反射光線都匯聚到橢圓的另一個焦點上;()橢圓的這種光學(xué)特性,常被用來設(shè)計一些照明設(shè)備或聚熱裝置.例如在處放置一個熱源,那
2025-06-22 16:01