【摘要】?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第5課時(shí)數(shù)列的通項(xiàng)與求和要點(diǎn)·疑點(diǎn)·考點(diǎn)求數(shù)列的前n項(xiàng)和Sn,重點(diǎn)應(yīng)掌握以下幾種方法::如果一個(gè)數(shù)列{an},與
2024-11-10 07:56
【摘要】1求數(shù)列通項(xiàng)公式的方法一、知識(shí)復(fù)習(xí)1、通項(xiàng)公式:2、等差數(shù)列的通項(xiàng)公式:推導(dǎo)方法:3、等比數(shù)列的通項(xiàng)公式:推導(dǎo)方法:二、求數(shù)列的通項(xiàng)公式方法總結(jié)(一)觀察歸納法:通過(guò)觀察尋求na與n的關(guān)系(1)5,55,555,5555,(2)149161,2,
2024-10-21 07:00
【摘要】專(zhuān)題數(shù)列通項(xiàng)公式的求法一、定義法直接利用等差數(shù)列或等比數(shù)列的定義求通項(xiàng)的方法叫定義法,這種方法適應(yīng)于已知數(shù)列類(lèi)型的題目.例1.等差數(shù)列是遞增數(shù)列,前n項(xiàng)和為,且成等比數(shù)列,.求數(shù)列的通項(xiàng)公式解:設(shè)數(shù)列公差為∵成等比數(shù)列,∴,即,得∵,∴……………………①∵∴…………②由①②得:,∴點(diǎn)評(píng):利用定義法求數(shù)列通項(xiàng)時(shí)要注意不用錯(cuò)定義,設(shè)法求出首項(xiàng)與公差(公
2025-03-25 02:53
【摘要】緒論數(shù)列是中學(xué)數(shù)學(xué)的一項(xiàng)重要內(nèi)容,在中學(xué)數(shù)學(xué)體系中相對(duì)獨(dú)立,但有一定的綜合性和靈活性.高中數(shù)學(xué)中的數(shù)列知識(shí)主要涉及等差、等比數(shù)列的通項(xiàng)公式以及數(shù)列求和等內(nèi)容,能力要求較高.數(shù)列的通項(xiàng)公式是高中數(shù)學(xué)中最為常見(jiàn)的題型之一,它既可考查轉(zhuǎn)化與化歸的數(shù)學(xué)思想,又能反映中學(xué)生對(duì)等差與等比數(shù)列理解的深度,具有一定的技巧性,因此經(jīng)常滲透在數(shù)學(xué)競(jìng)賽和高考中.
2025-01-06 06:52
【摘要】數(shù)列練習(xí)題1.在公比為的正項(xiàng)等比數(shù)列中,,則當(dāng)取得最小值時(shí),()A.B.C.D.2.設(shè)等比數(shù)列{an}的公比q=3,前n和為Sn,則的值為A.B.C.D.93.已知公比的等比數(shù)列的前n項(xiàng)和為,,,則()A.B.C.D.4.設(shè)等比數(shù)列{an}的公比q=2
2025-06-26 05:23
【摘要】數(shù)列求和的基本方法和技巧利用下列常用求和公式求和是數(shù)列求和的最基本最重要的方法.1、等差數(shù)列求和公式:2、等比數(shù)列求和公式:3、自然數(shù)列4、自然數(shù)平方組成的數(shù)列[例1]已知,求的前n項(xiàng)和.解:由由等比數(shù)列求和公式得(利用常用公式)
2025-06-27 23:13
【摘要】數(shù)列通項(xiàng)的求法數(shù)列是高中代數(shù)的重要內(nèi)容之一,也是初等數(shù)學(xué)與高等數(shù)學(xué)的銜接點(diǎn),因而在歷年的高考試題中占有較大的比重,在這類(lèi)問(wèn)題中,求數(shù)列的通項(xiàng)往往是解題的突破口、關(guān)鍵點(diǎn)。一、觀察法?觀察法就是觀察數(shù)列特征,橫向看各項(xiàng)之間的結(jié)構(gòu),縱向看各項(xiàng)與項(xiàng)數(shù)n的內(nèi)在聯(lián)系。?適用于一些較簡(jiǎn)單、特殊的數(shù)列。例1寫(xiě)出下列數(shù)列的一
2025-01-08 14:05
【摘要】課時(shí)序號(hào):36重點(diǎn):1、理解數(shù)列通項(xiàng)公式的意義,掌握等差、等比數(shù)列的通項(xiàng)公式的求法;2、根據(jù)數(shù)列的遞推公式構(gòu)造等差、等比數(shù)列求數(shù)列的通項(xiàng)公式.3、掌握數(shù)列通項(xiàng)公式的常用方法:公式法、累加法、累乘法、輔助數(shù)列法等等難點(diǎn):1、根據(jù)數(shù)列的遞推公式構(gòu)造等差、等比數(shù)列求數(shù)列的通項(xiàng)公式.2、掌握數(shù)列通項(xiàng)公式的常用方法:公式法、累加法、累乘法、迭代
2025-04-30 18:12
【摘要】1.在數(shù)列{}中,=1,(n+1)·=n·,求的表達(dá)式。2.已知數(shù)列中,,前項(xiàng)和與的關(guān)系是,試求通項(xiàng)公式。3.已知數(shù)的遞推關(guān)系為,且求通項(xiàng)。,,,,求。{}中且(),,求數(shù)列的通項(xiàng)公式。,其中是首項(xiàng)為1,公差為2的等差數(shù)列.求數(shù)列的通項(xiàng)公式;7.已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d0,且第二項(xiàng)、第五項(xiàng)
2025-03-25 05:12
【摘要】課題:數(shù)列求和考綱要求:掌握等差、等比數(shù)列的求和公式及其應(yīng)用;掌握常見(jiàn)的數(shù)列求和方法(公式法、倒序相加、錯(cuò)位相減,分組求和、拆項(xiàng)、裂項(xiàng)求和等求和方法).教材復(fù)習(xí)基本公式法:等差數(shù)列求和公式:等比數(shù)列求和公式: ;;.錯(cuò)位相消法:給各邊同乘以一個(gè)適當(dāng)?shù)臄?shù)或式,然后把所得的等式和原等式相減,對(duì)應(yīng)項(xiàng)相互抵消,最后得出前項(xiàng)和.一般適應(yīng)于數(shù)列的前向求和,其中成等差
2025-04-17 01:43
【摘要】數(shù)列的求和訓(xùn)練1.錯(cuò)位相減法求和:如:1.求和:2.裂項(xiàng)相消法求和:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差、正負(fù)相消剩下首尾若干項(xiàng)。,若,則等于(?。〢.1B.C.D.,求前項(xiàng)的和;=,設(shè),求.4.求。,.(1)求數(shù)列的通項(xiàng)公式及
2025-03-25 02:52
【摘要】......求數(shù)列通項(xiàng)公式一、公式法 類(lèi)型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例1已知數(shù)列滿(mǎn)足,,求數(shù)列的通項(xiàng)公式。 解:兩邊除以,得,則,故數(shù)列是以為首項(xiàng),以為公差
【摘要】數(shù)列的概念、通項(xiàng)公式和遞推公式期末復(fù)習(xí)一、數(shù)列的概念:數(shù)列.項(xiàng)是關(guān)于項(xiàng)數(shù)的一種特殊的函數(shù)關(guān)系,只是定義域是自小到大的正整數(shù)而已.:通項(xiàng)公式法,遞推公式法,前n項(xiàng)和法,和圖像法等.(圖像是自變量取正整數(shù)的一些孤立的點(diǎn))二、數(shù)列的通項(xiàng)公式:???Nnnfananannn),(:.
2024-11-09 03:30
【摘要】數(shù)列和等差數(shù)列練習(xí)題一、填空題1,1、數(shù)列1,2、等差數(shù)列-3,-6,-9,-12,…的通項(xiàng)公式是——3、已知數(shù)列4,7,10,…,3n-2,…則4891是這個(gè)數(shù)列的第------4、a1a2a3a4成等差數(shù)列,a1+a4=25,則s4=-----------5、在等差數(shù)列{an}中,s7=63,則a4=---------- 6,在等差數(shù)列
2025-01-14 02:19
【摘要】通項(xiàng)公式和前n項(xiàng)和1、新課講授:求數(shù)列前N項(xiàng)和的方法1.公式法(1)等差數(shù)列前n項(xiàng)和:特別的,當(dāng)前n項(xiàng)的個(gè)數(shù)為奇數(shù)時(shí),,即前n項(xiàng)和為中間項(xiàng)乘以項(xiàng)數(shù)。這個(gè)公式在很多時(shí)候可以簡(jiǎn)化運(yùn)算。(2)等比數(shù)列前n項(xiàng)和:q=1時(shí),,特別要注意對(duì)公比的討論。(3)其他公式較常見(jiàn)公式:1、2、3、[例1