【摘要】新課標人教版課件系列《高中數(shù)學》必修5《等比數(shù)列的前n項和》審校:王偉教學目標?知識與技能:掌握等比數(shù)列的前n項和公式,并用公式解決實際問題?過程與方法:由研究等比數(shù)列的結構特點推導出等比數(shù)列的前n項和公式?情態(tài)與價值:從“錯位相減法”這種算法中,體會“消除差別”,培養(yǎng)化簡的能力?(
2024-11-10 00:23
【摘要】成才之路·數(shù)學路漫漫其修遠兮吾將上下而求索人教A版·必修5成才之路·數(shù)學·人教A版·必修5第二章數(shù)列第二章數(shù)列成才之路·數(shù)學·人教A版·必修5第二章
2025-04-30 04:33
【摘要】數(shù)列求和—裂項相消專題裂項相消的實質是將數(shù)列中的每項(通項)分解,然后重新組合,使之能消去一些項,以達到求和的目的.常見的裂項相消形式有:1.┈┈(分母可分解為的系數(shù)相同的兩個因式)2.3.4.5.┈┈,,且,求數(shù)列的前n項的和.
2025-03-25 02:51
【摘要】
2024-11-12 18:09
【摘要】2020屆高考數(shù)學二輪復習系列課件16《數(shù)列-遞歸數(shù)列》考試內容:已知數(shù)列的遞歸關系求數(shù)列的通項公式考試要求:遞歸數(shù)列與極限、數(shù)學歸納法的綜合運用,涉及的思想方法主要是轉化與歸納,考題一般為壓軸題。專題知識整合已知數(shù)列的遞推關系求數(shù)列的通項公式。將已知遞推關系式,用代數(shù)的一些變形技巧
2024-11-11 08:47
【摘要】?要點183。疑點183??键c?課前熱身?能力183。思維183。方法?延伸183。拓展?誤解分析第2課時等差、等比數(shù)列的通項及求和公式要點183。疑點183??键c(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S(k-1)n…成等差(
2025-08-16 01:49
【摘要】數(shù)列的概念高三備課組1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關)2、通項公式:數(shù)列的第n項an與n之間的函數(shù)關系用一個公式來表示an=f(n)。(通項公式不唯一)3、數(shù)列的表示:(1)列舉法:如1,3,5,7,9……;(2)圖解法:由(n,an
2024-11-10 07:30
【摘要】......數(shù)列求和專題復習一、公式法:::;;例1:已知,求的前項和.例2:設,,求的最大值.二
【摘要】1題目:數(shù)列的求和主講人:鄧盛2,能熟練運用這些方法解決問題。,歸納總結能力,聯(lián)想、轉化、化歸能力,探究創(chuàng)新能力。讓學生認識到事物是普遍聯(lián)系,發(fā)展變化的。二.教學目標:一、教學重點:掌握特殊數(shù)列的求和方法,主要學習分組求和法,錯位相減法,裂項相消法。31、2+4+6+
2024-09-28 08:08
【摘要】等差數(shù)列的通項公式復習數(shù)列的有關概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用表示,2a…,第n項用表示,na…,數(shù)
2025-08-16 02:28
【摘要】等比數(shù)列的通項公式復習數(shù)列的有關概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用表示,2a…,第n項用表示,na…,數(shù)列的一般形式可以寫成:,1
2025-05-12 21:08
2024-11-11 08:58
【摘要】課時序號:36重點:1、理解數(shù)列通項公式的意義,掌握等差、等比數(shù)列的通項公式的求法;2、根據(jù)數(shù)列的遞推公式構造等差、等比數(shù)列求數(shù)列的通項公式.3、掌握數(shù)列通項公式的常用方法:公式法、累加法、累乘法、輔助數(shù)列法等等難點:1、根據(jù)數(shù)列的遞推公式構造等差、等比數(shù)列求數(shù)列的通項公式.2、掌握數(shù)列通項公式的常用方法:公式法、累加法、累乘法、迭代
2025-04-30 18:12
2024-11-11 21:08
【摘要】由此題,如何通過數(shù)列前n項和來求數(shù)列通項公式???首項與公差各是多少?數(shù)列嗎?如果是,它的并判斷這個數(shù)列是等差,求這個數(shù)列的通項公式項和為的前:已知數(shù)列例,1212nnSnann??)1(?????????????n1na2a1a1nSna1na2a1anS??與解:根據(jù)212122122)]1()1[()(1???????
2024-11-10 00:24