【摘要】二次函數(shù)的圖象和性質(zhì)第二章二次函數(shù)導(dǎo)入新課講授新課當堂練習課堂小結(jié)第3課時二次函數(shù)y=a(x-h)2的圖象與性質(zhì)情境引入學習目標y=a(x-h)2的圖象.(難點)y=a(x-h)2的性質(zhì).(重點)y=ax2與y=a(x-h)2的聯(lián)系.導(dǎo)入新課復(fù)習引入a,
2025-06-18 01:23
【摘要】◆知識導(dǎo)航◆典例導(dǎo)學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學◆反饋演練(◎
2025-06-12 08:23
2025-06-20 03:59
【摘要】第二章二次函數(shù)知識點1二次函數(shù)與一元二次方程的關(guān)系1.(陜西中考)下列關(guān)于二次函數(shù)y=ax2-2ax+1(a1)的圖象與x軸交點的判斷,正確的是(D),且它位于y軸右側(cè),且它們均位于y軸左側(cè),且它們均位于y軸右側(cè)2.(孝感中考)如圖,拋物線y=ax2與直線y=b
2025-06-18 00:42
【摘要】確定二次函數(shù)的表達式第二章二次函數(shù)導(dǎo)入新課講授新課當堂練習課堂小結(jié)學習目標.(難點).(重點)導(dǎo)入新課復(fù)習引入y=kx+b(k≠0)有幾個待定系數(shù)?通常需要已知幾個點的坐標求出它的表達式??它的一般步驟是什么?2個2個待定系數(shù)法(1)設(shè):(表達式)
2025-06-19 07:25
【摘要】2二次函數(shù)的圖象與性質(zhì)第二章二次函數(shù)課堂達標素養(yǎng)提升第二章二次函數(shù)第4課時二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)課堂達標一、選擇題1.2022·浦東新區(qū)一模如果二次函數(shù)y=ax2+bx+c的圖象全部在x軸的下方,那么下列判斷正確的是()A.
2025-06-17 22:35
【摘要】2二次函數(shù)的圖象與性質(zhì)第二章二次函數(shù)課堂達標素養(yǎng)提升第二章二次函數(shù)第2課時二次函數(shù)y=ax2,y=ax2+c的圖象與性質(zhì)課堂達標一、選擇題1.2022·余杭區(qū)期中已知二次函數(shù)y=ax2的圖象經(jīng)過點(-2,6),則下列點中不在該函數(shù)圖象上的是(
2025-06-18 02:56
【摘要】5二次函數(shù)與一元二次方程,體會方程與函數(shù)之間的聯(lián)系.x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實數(shù)根、兩個相等的實數(shù)根和沒有實數(shù)根.x軸交點的橫坐標.ax2+bx+c=0的求根公式是什么?當b2-4ac≥0時,當b2-4ac0時,方程無實數(shù)根.aacbbx2
2025-06-15 02:55
【摘要】5二次函數(shù)與一元二次方程【基礎(chǔ)梳理】y=ax2+bx+c(a≠0)與一元二次方程ax2+bx+c=0(a≠0)的關(guān)系拋物線y=ax2+bx+c與x軸的交點的個數(shù)一元二次方程ax2+bx+c=0(a≠0)的根的情況2_______________1_______________0_______
2025-06-12 12:32
2025-06-21 02:27
2025-06-15 03:01
【摘要】3確定二次函數(shù)的表達式【基礎(chǔ)梳理】確定二次函數(shù)表達式的一般方法已知條件選用表達式的形式頂點和另一點的坐標_______二次函數(shù)各項系數(shù)中的一個和兩點的坐標_______三個點的坐標_______頂點式一般式一般式【自我診斷】1.(1)確定二次函數(shù)的表達式一般需要三個條件.(
2025-06-14 06:48
【摘要】3確定二次函數(shù)的表達式..二次函數(shù)解析式有哪幾種表達方式?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k如何求二次函數(shù)的解析式?已知二次函數(shù)圖象上三個點的坐標,可用待定系數(shù)法求其解析式.交點式:y=a(x-x1)(x-x2)解析:設(shè)所求的二次函數(shù)為y=ax2+bx+c,由條件得:
2025-06-15 03:00
【摘要】第26章二次函數(shù)知識管理學習指南歸類探究當堂測評分層作業(yè)第1課時二次函數(shù)y=ax2的圖象與性質(zhì)學習指南★教學目標★1.會作二次函數(shù)y=ax2的圖象.2.能正確說出函數(shù)y=ax
2025-06-17 12:43