【摘要】a和b,它們的夾角為θ,則a·b=abcos.a·b稱為向量a與b的數(shù)量積(或內(nèi)積).θa·b等于a的長度a與b在a的方向上的投影bcos的乘積.θ6.a·b≤ab.3.a⊥
2024-11-10 08:35
【摘要】平面向量數(shù)量積的坐標表示、模、夾角.),1,1(),32,1(1?的夾角與求已知例baba????例2已知A(1,2),B(2,3),C(-2,5),試判斷?ABC的形狀,并給出證明.練習(1)已知=(4,3),向量是垂直于的單位向量,求.abab
2025-04-24 09:59
【摘要】設是平面內(nèi)所有向量的一組基底,則下面四組向量中,不能作為基底的是()ABCD21ee??,2121eeee??????和12216423eeee????
2025-07-24 04:31
【摘要】......海伊教育學科教師輔導講義學員編號:年級:九年級課時數(shù):學員姓名:張鴻敬輔導科目:數(shù)學學科教師:高
2025-04-17 01:00
【摘要】《平面向量的加法及其幾何意義》教學案例《向量的加法運算及其幾何意義》選自數(shù)學(基礎模塊),內(nèi)容包括向量加法的三角形法則、平行四邊形法則及應用,向量加法的運算律及應用。本節(jié)課是學習平面向量基本概念之后的一節(jié)比較重要的課,通過類比數(shù)的運算,研究向量的運算及運算律,滲透數(shù)學建模的思想。向量的加法更是后續(xù)學習的鋪墊,因為向量加法運算是平面向量的線性運算(向量加法、向量減法、向量數(shù)乘運算以及它們
2025-06-07 18:55
【摘要】§平面向量的坐標運算(二)知識回顧平面向量的坐標表示分別與x軸、y軸方向相同的兩單位向量i、j作為基底,任一向量a,有且只有一對實數(shù)x、y,使得Oxyijaa=xi+yj=(x,y)1.設則
2024-11-09 06:28
【摘要】第二節(jié)平面向量基本定理及坐標表示分析不易直接用c,d表示,所以可以先由聯(lián)合表示,再進行向量的線性運算,從方程中解出??DABA,??DABA,??NAMA,??DABA,解
2024-11-12 01:35
【摘要】§4平面向量的坐標4.1平面向量的坐標表示4.2平面向量線性運算的坐標表示4.3向量平行的坐標表示,)1.問題導航(1)相等向量的坐標相同嗎?相等向量的起點、終點的坐標一定相同嗎?(2)求向量AB→的坐標需要知道哪些量?(3)兩個向量a=(x1,y
2024-11-28 00:13
【摘要】......平面向量一、知識溫故:既有大小又有方向的量叫向量,有二個要素:大小、方向.:①用有向線段表示;②用字母、等表示;③平面向量的坐標表示:分別取與軸、軸方向相同的兩個單位向量、作為基底。任作一個向量,由平面向量基本定理
【摘要】平面向量的坐標運算(一)(教案)中衛(wèi)市第一中學俞清華教學目標:知識與技能:(1)理解平面向量的坐標概念;(2)掌握平面向量的坐標運算.過程與方法:(1)通過對坐標平面內(nèi)點和向量的類比,培養(yǎng)學生類比推理的能力;(2)通過平面向量坐標表示和坐標運算法則的推導培養(yǎng)學生歸納、猜想、演繹的能力;(3)通過用代數(shù)方法處理幾何問題,提高學生用數(shù)形結合的思想方法解決問題的能力.
2025-04-16 23:06
【摘要】解及其坐標表示lαOP例1在平面內(nèi)的一條直線,如果和這個平面的一條斜線的射影垂直,那么它也和這條斜線垂直。已知:如圖,PO,PA分別是平面α的垂線,斜線,AO是PA在平面α內(nèi)的射影,.:,,PAlOAll???求證且?AlαOP.,,OAPOal
2024-11-18 11:25
【摘要】2020屆高考數(shù)學復習強化雙基系列課件26《平面向量的坐標表示與運算》?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析平面向量的坐標表示要點·疑點·考點
2024-11-10 00:27
【摘要】復習引入?.(1)21向量的一組基底有叫做表示這一平面內(nèi)所,我們把不共線向量ee(2)基底不惟一,關鍵是不共線;進行分解;的條件下、在給出基底由定理可將任一向量21(3)eea.,,(4)2121惟一確定的數(shù)量、、是被、分解形式惟一基底給定時eea??若e1、e2是同一平面內(nèi)的兩個不共線向量
2024-11-17 15:02
【摘要】平面向量的坐標表示1、平行向量基本定理:babbababa???????0////)(2、向量數(shù)乘坐標表示3、一個向量的坐標等于向量終點的坐標減去始點的坐標),(2121aaaaa??????),()()(11222211yx yxAB yx ByxA,,),()
2024-11-18 15:31
【摘要】向量的坐標表示與運算復習1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有
2024-11-09 03:52