【摘要】函數(shù)的單調(diào)性?1.函數(shù)單調(diào)性的判定.?2.函數(shù)單調(diào)性的證明.?3.函數(shù)單調(diào)性的應(yīng)用.?1.利用已知函數(shù)的單調(diào)性?2.利用函數(shù)圖象?3.復(fù)合函數(shù)的判定方法?4.利用定義一.函數(shù)單調(diào)性的判定方法:例f(x)在實(shí)數(shù)集上是減函數(shù),求f(2x-x2)的單調(diào)區(qū)間以及單調(diào)性
2024-11-07 00:42
【摘要】1.3導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)本節(jié)重點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.本節(jié)難點(diǎn):用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟.(5)對數(shù)函數(shù)的導(dǎo)數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(4)指數(shù)函數(shù)的導(dǎo)數(shù):.)()1(xx
2025-10-10 11:54
【摘要】§函數(shù)的單調(diào)性一、教學(xué)目標(biāo)1、知識與技能:(1)建立增(減)函數(shù)的概念通過觀察一些函數(shù)圖象的特征,形成增(減)函數(shù)的直觀認(rèn)識.再通過具體函數(shù)值的大小比較,認(rèn)識函數(shù)值隨自變量的增大(減?。┑囊?guī)律,由此得出增(減)函數(shù)單調(diào)性的定義.掌握用定義證明函數(shù)單調(diào)性的步驟。(2)函數(shù)單調(diào)性的研究經(jīng)歷了從直觀到抽象,以圖
2024-11-28 12:00
【摘要】函數(shù)的單調(diào)性與最值教學(xué)目的:(1)通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性及其幾何意義;(2)學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);(3)能夠熟練應(yīng)用定義判斷數(shù)在某區(qū)間上的的單調(diào)性.教學(xué)重點(diǎn):函數(shù)的單調(diào)性及其幾何意義.教學(xué)難點(diǎn):利用函數(shù)的單調(diào)性定義判斷、證明函數(shù)的單調(diào)性.教學(xué)過程:一、引入問題:請觀察下面兩組在相應(yīng)區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性
2025-07-24 09:48
【摘要】南京市第三十九中學(xué)θ第2.1.1節(jié)開頭的第三個(gè)問題中,氣溫θ是關(guān)于時(shí)間t的函數(shù)4812162024to-2248610xyoyY=2x+1xoY=(x-1)2-112-1yxy=x3oyOxOxy
2024-11-03 17:55
【摘要】南京市第三十九中學(xué)θ第2.1.1節(jié)開頭的第三個(gè)問題中,氣溫θ是關(guān)于時(shí)間t的函數(shù)4812162024to-2248610xyoyY=2x+1xoY=(x-1)2-112-1yxy=x3oyOxx1y?
2024-11-17 22:49
【摘要】函數(shù)的單調(diào)性數(shù)與形,本是相倚依焉能分作兩邊飛數(shù)無形時(shí)少直覺形少數(shù)時(shí)難入微數(shù)形結(jié)合百般好隔離分家萬事休切莫忘,幾何代數(shù)統(tǒng)一體永遠(yuǎn)聯(lián)系莫分離
2024-11-22 01:56
【摘要】《函數(shù)的單調(diào)性》教學(xué)設(shè)計(jì)北京景山學(xué)校許云堯一、教學(xué)目標(biāo)的確定1使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.3通過知識的探究過程培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣;讓學(xué)生經(jīng)歷從具體到抽象,從特殊到一般,從感性到理
2025-07-17 20:38
【摘要】第一篇:函數(shù)的單調(diào)性教學(xué)反思 教學(xué)反思 函數(shù)的單調(diào)性是學(xué)生在了解函數(shù)概念后學(xué)習(xí)的函數(shù)的第一個(gè)性質(zhì),是函數(shù)學(xué)習(xí)中第一個(gè)用數(shù)學(xué)符號語言刻畫的概念,為進(jìn)一步學(xué)習(xí)函數(shù)其它性質(zhì)提供了方法依據(jù)。對于函數(shù)單調(diào)性...
2024-11-04 01:42
【摘要】第一篇:函數(shù)的單調(diào)性(教學(xué)設(shè)計(jì)) 【教學(xué)目標(biāo)】 :從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,掌握利用函數(shù)圖象和定義判斷、證明函數(shù)單調(diào)性的方法步驟。 :通過觀察函數(shù)圖象的變化趨勢上升或下降,初步體會(huì)函數(shù)...
2024-11-04 01:31
【摘要】函數(shù)的單調(diào)性與二次函數(shù)重難點(diǎn)知識歸納(一)函數(shù)的單調(diào)性1、單調(diào)增函數(shù)的定義:在函數(shù)y=f(x)的定義域內(nèi)的一個(gè)區(qū)間A上,如果對于任意兩數(shù)x1,x2∈A,當(dāng)x1x2時(shí),都有f(x1)f(x2),那么,就稱函數(shù)y=f(x)在區(qū)間A上是增加的,有時(shí)也稱函數(shù)y=f(x)在區(qū)間A上是遞增的.2、單調(diào)減函數(shù)的定義:在函數(shù)y=f(x)的定義域內(nèi)的一個(gè)區(qū)間A上,如果對于任意兩
2025-06-18 20:41
【摘要】1.求證函數(shù)f(x)=-x3+1在(-∞,0)上是減函數(shù):f(x)=ex+在(-∞,0)為減函數(shù)3(1)已知函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,4]上是減函數(shù),則實(shí)數(shù)a的取值范圍是. (2)已知函數(shù)f(x)=x2+2(a-1)x+2的遞減區(qū)間是(-∞,4],則實(shí)數(shù)a的取值范
2025-07-24 01:48
【摘要】函數(shù)的單調(diào)性和最值考試要求1、函數(shù)單調(diào)區(qū)間的判定2、利用函數(shù)單調(diào)性求最值典題精講板塊一:函數(shù)的單調(diào)性與單調(diào)區(qū)間1、增函數(shù)、減函數(shù)增函數(shù)減函數(shù)定義一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮,如果對于定義域I內(nèi)某個(gè)區(qū)間D上的任意兩個(gè)自變量x1,x2當(dāng)x1x2時(shí),都有____________,那么就說函數(shù)f(x
2025-05-16 07:45
【摘要】....判斷函數(shù)單調(diào)性的常用方法一、定義法設(shè)x1,x2是函數(shù)f(x)定義域上任意的兩個(gè)數(shù),且x1<x2,若f(x1)<f(x2),則此函數(shù)為增函數(shù);反知,若f(x1)>f(x2),則此函數(shù)為減函數(shù).【例1】證明:當(dāng)時(shí),。0?x)1ln(x?證明:令01)1ln()(
2025-04-08 13:21
【摘要】新疆和靜高級中學(xué)高三第一輪復(fù)習(xí)函數(shù)的單調(diào)性新疆和靜高級中學(xué)1、函數(shù)的單調(diào)性的定義2、判斷函數(shù)單調(diào)性(求單調(diào)區(qū)間)的方法:(1)從定義入手(2)從導(dǎo)數(shù)入手(3)從圖象入手(4)從熟悉的函數(shù)入手(5)從復(fù)合函數(shù)的單調(diào)性規(guī)律入手注:先求函數(shù)的定義域3、函數(shù)單調(diào)性的證明:定義
2024-11-12 17:15