freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx專題五:函數(shù)與導(dǎo)數(shù)(含近年高考試題)-免費(fèi)閱讀

2025-05-10 08:53 上一頁面

下一頁面
  

【正文】 ln(a-1)=(a-1)[1-ln(a-1)],∵1a≤1+e,∴a-10,1-ln(a-1)≥1-ln[(1+e)-1]=0,∴F(x)≥0,即f(x)≤x成立.綜上,當(dāng)1≤a≤1+e時(shí),有f(x)≤x.法二:令g(a)=x-f(x)=-xa+x+ex,只要證明g(a)≥0在1≤a≤1+e時(shí)恒成立即可.g(1)=-x+x+ex=ex0,①g(1+e)=-x(ax-1)≥0(x0),即x≥,此時(shí)f(x)的單調(diào)遞減區(qū)間為.由得a≥1.③當(dāng)a0時(shí),f′(x)≤0(x0)等價(jià)于(2ax+1)(12)若三次函數(shù)f(x)有三個(gè)零點(diǎn),則方程有兩個(gè)不等實(shí)根,且極大值大于0,極小值小于0.(13)證題中常用的不等式:① ② ③ ④ ⑤ ⑥ 考點(diǎn)一:導(dǎo)數(shù)幾何意義:角度一 求切線方程1.(20142015專題五:函數(shù)與導(dǎo)數(shù) 在解題中常用的有關(guān)結(jié)論(需要熟記):(1)曲線在處的切線的斜率等于,切線方程為(2)若可導(dǎo)函數(shù)在 處取得極值,則。洛陽統(tǒng)考)已知函數(shù)f(x)=3x+cos 2x+sin 2x,a=f′,f′(x)是f(x)的導(dǎo)函數(shù),則過曲線y=x3上一點(diǎn)P(a,b)的切線方程為(  )A.3x-y-2=0B.4x-3y+1=0C.3x-y-2=0或3x-4y+1=0D.3x-y-2=0或4x-3y+1=0解析:選A 由f(x)=3x+cos 2x+sin 2x得f′(x)=3-2sin 2x+2cos 2x,則a=f′=3-2sin+2cos==x3得y′=3x2,過曲線y=x3上一點(diǎn)P(a,b)的切線的斜率k=3a2=312==a3,則b=1,所以切點(diǎn)P的坐標(biāo)為(1,1),故過曲線y=x3上的點(diǎn)P的切線方程為y-1=3(x-1),即3x-y-2=0.角度二 求切點(diǎn)坐標(biāo)2.(2013(ax-1)≥0(x0),即x≥-,此時(shí)f(x)的單調(diào)遞減區(qū)間為.由得a≤-.綜上,實(shí)數(shù)a的取值范圍是∪[1,+∞).[針對訓(xùn)練](2014(1+e)+x+ex=ex-ex,設(shè)h(x)=ex-ex,則h′(x)=ex-e,當(dāng)x1時(shí),h′(x)0;當(dāng)x1時(shí),h′(x)0,∴h(x)在(-∞,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,∴h(x)≥h(1)=e1-e河南省三市調(diào)研)已知函數(shù)f(x)=ax-ex(a0).(1)若a=,求函數(shù)f(x)的單調(diào)區(qū)間;(2)當(dāng)1≤a≤1+e時(shí),求證:f(x)≤x.[解] (1)當(dāng)a=時(shí),f(x)=x-ex.f′(x)=-ex,令f′(x)=0,得x=-ln 2.當(dāng)x-ln 2時(shí),f′(x)0;當(dāng)x-ln 2時(shí),f′(x)0,∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-ln 2),單調(diào)遞減區(qū)間為(-ln 2,+∞).(2)證明:法一:令F(x)=x-f(x)=ex-(a-1)x,(ⅰ)當(dāng)a=1時(shí),F(xiàn)(x)=ex0,∴f(x)≤x成立.(ⅱ)當(dāng)1a≤1+e時(shí),F(xiàn)′(x)=ex-(a-1)=ex-eln(a-1),∴當(dāng)xln(a-1)時(shí),F(xiàn)′(x)0;當(dāng)xln(a-1)時(shí),F(xiàn)′(x)0,∴F(x)在(-∞,ln (a-1))上單調(diào)遞減,在(ln(a-1),+∞)上單調(diào)遞增.∴F(x)≥F(ln(a-1))=eln(a-1)-(a-1)山西診斷)已知函數(shù)f(x)=ln x-a2x2+ax(a∈R).(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;(2)若函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍.[解] (1)當(dāng)a=1時(shí),f(x)=ln x-x2+x,其定義域是(0,+∞),f′(x)=-2x+1=-,令f′(x)=0,即-=0,解得x=-或x=1.∵x0,∴x=1.當(dāng)0x1時(shí),f′(x)0;當(dāng)x1時(shí),f′(x)0.∴函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減.(2)顯然函數(shù)f(x)=ln x-a2x2+ax的定義域?yàn)?0,+∞),∴f′(x)=-2a2
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1