【摘要】......二輪專題(十一)導(dǎo)數(shù)與不等式證明【學(xué)習(xí)目標(biāo)】1.會(huì)利用導(dǎo)數(shù)證明不等式.2.掌握常用的證明方法.【知識(shí)回顧】一級(jí)排查:應(yīng)知應(yīng)會(huì),利用新函數(shù)的單調(diào)性或最值解決不等式的證明問(wèn)題.比如要證明
2025-04-17 00:39
【摘要】2016年高考數(shù)學(xué)理試題分類匯編不等式一、選擇題1、(2016年北京高考)若,滿足,則的最大值為()【答案】C2、(2016年山東高考)若變量x,y滿足則的最大值是(A)4 (B)9 (C)10 (D)12【答案】C3、(2016年
2025-01-15 09:24
【摘要】不等式與不等式組(二)1.某次知識(shí)競(jìng)賽共有20道題,每一題答對(duì)得10分,答錯(cuò)或不答都倒扣5分。小明得分低于90分,他最多答對(duì)多少道題?總得分如何計(jì)算?2.小穎家每月水費(fèi)都不少于15元,自來(lái)水公司的收費(fèi)標(biāo)準(zhǔn)如下:若每戶每月用水不超過(guò)5立方米,則每立方米收費(fèi)1.8元;若每戶每月用水超過(guò)5立方米,則超出部分每立方米收費(fèi)
2025-08-05 19:39
【摘要】(2020?郴州)解不等式4(x﹣1)+3≥3x,并把解集在數(shù)軸上表示出來(lái).考點(diǎn):解一元一次不等式;在數(shù)軸上表示不等式的解集.3718684分析:首先去括號(hào),然后移項(xiàng)、合并同類項(xiàng),系數(shù)化成1,即可求得不等式的解集.解答:解:去括號(hào)得:4x﹣4+3≥3x,移項(xiàng)得:4x﹣3x≥4﹣3則x≥1.把解集在數(shù)軸上表示為
2025-08-11 01:27
【摘要】第一篇:均值不等式證明 均值不等式證明 一、已知x,y為正實(shí)數(shù),且x+y=1求證 xy+1/xy≥17/ 41=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥ 2當(dāng)且僅當(dāng)xy=...
2025-10-27 18:15
【摘要】第一篇:不等式證明[精選] §14不等式的證明 不等式在數(shù)學(xué)中占有重要地位,由于其證明的困難性和方法的多樣性,,而變形的依據(jù)是不等式的性質(zhì),不等式的性分類羅列如下:不等式的性質(zhì):a3b?a-b0...
2025-10-30 22:00
【摘要】思考1思考2復(fù)習(xí)引入練習(xí)答案作業(yè):課本54P6題數(shù)學(xué)歸納法證明不等式數(shù)學(xué)歸納法證明不等式(即n=n0第一個(gè)命題對(duì)應(yīng)的n的值,如n0=1)(歸納奠基);n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立(歸納遞推).數(shù)學(xué)歸納法:關(guān)于正整數(shù)n的命題(相當(dāng)于多米諾骨牌
2024-11-21 01:17
【摘要】第一篇:導(dǎo)數(shù)證明不等式 導(dǎo)數(shù)證明不等式 一、當(dāng)x1時(shí),證明不等式xln(x+1) f(x)=x-ln(x+1) f'(x)=1-1/(x+1)=x/(x+1) x1,所以f'(x)0...
2025-10-17 09:50
【摘要】第一篇:不等式的證明 學(xué)習(xí)資料 教學(xué)目標(biāo) (1)理解證明不等式的三種方法:比較法、綜合法和分析法的意義; (2)掌握用比較法、綜合法和分析法來(lái)證簡(jiǎn)單的不等式; (3)能靈活根據(jù)題目選擇適當(dāng)?shù)?..
2025-10-19 23:51
【摘要】第一篇:證明不等式方法 不等式的證明是高中數(shù)學(xué)的一個(gè)難點(diǎn),題型廣泛,涉及面廣,證法靈活,錯(cuò)法多種多樣,本節(jié)通這一些實(shí)例,歸納整理證明不等式時(shí)常用的方法和技巧。1比較法 比較法是證明不等式的最基本方...
2025-10-20 04:53
【摘要】第一篇:不等式的證明 復(fù)習(xí)課:不等式的證明 教學(xué)目標(biāo) (1).理解絕對(duì)值的幾何意義并能用其證明不等式和解絕對(duì)值不等式.(2).了解數(shù)學(xué)歸納法的使用原理.(3).會(huì)用數(shù)學(xué)歸納法證明一些簡(jiǎn)單問(wèn)題...
【摘要】第一篇:2012高中數(shù)學(xué)單元訓(xùn)練不等式的證明(二) 課時(shí)訓(xùn)練37不等式的證明 (二)【說(shuō)明】本試卷滿分100分,、選擇題(每小題6分,共42分) a2b 2+<x<1,a、b為正常數(shù),的最小值...
2025-10-27 06:07
【摘要】第一篇:不等式3(基本不等式應(yīng)用與證明) 學(xué)習(xí)要求大成培訓(xùn)教案(不等式3基本不等式證明與應(yīng)用)基本不等式 ,,并掌握基本不等式中取等號(hào)的條件是:.算術(shù)平均數(shù):幾何平均數(shù) 2.設(shè)a≥0,b≥0則a...
2025-10-19 23:35
【摘要】數(shù)學(xué)教案-不等式的證明教學(xué)目標(biāo)1.進(jìn)一步熟練掌握比較法證明不等式;2.了解作商比較法證明不等式;3.提高學(xué)生解題時(shí)應(yīng)變能力.教學(xué)重點(diǎn)比較法的應(yīng)用教學(xué)難點(diǎn)常見(jiàn)解題技巧教學(xué)方法啟發(fā)引導(dǎo)式教學(xué)活動(dòng)(一)導(dǎo)入新課(教師活動(dòng))教師打出字幕(復(fù)習(xí)提問(wèn)),請(qǐng)三位同學(xué)回答問(wèn)題,教師點(diǎn)評(píng).(學(xué)
2024-11-24 20:56
【摘要】高中數(shù)學(xué)精講精練第六章不等式【知識(shí)圖解】【方法點(diǎn)撥】不等式是高中數(shù)學(xué)的重要內(nèi)容之一,不等式的性質(zhì)是解、證不等式的基礎(chǔ),兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的
2025-08-11 14:54