【摘要】鹽城市時楊中學(xué)2021年達(dá)標(biāo)課教學(xué)簡案學(xué)科數(shù)學(xué)授課教師張發(fā)軍授課班級高二(7)教學(xué)內(nèi)容雙曲線的幾何性質(zhì)(2)課型新授課課題:雙曲線的幾何性質(zhì)(2)一、三維目標(biāo):1、知識與技能:使學(xué)生掌握雙曲線的如下性質(zhì):對稱性、截距、頂點(diǎn)、軸、中心、離心率和準(zhǔn)線。使學(xué)生能夠根據(jù)雙曲線的漸近線、確定雙曲線的范
2024-12-08 07:53
【摘要】幾種常見函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí),過曲線某點(diǎn)的切線的斜率的精確描述與求值;物理學(xué)中,物體運(yùn)動過程中,在某時刻的瞬時速度的精確描述與求值等,都是極限思想得到本質(zhì)相同的數(shù)學(xué)表達(dá)式,將它們抽象歸納為一個統(tǒng)一的概念和公式——導(dǎo)數(shù),導(dǎo)數(shù)源于實(shí)踐,又服務(wù)于實(shí)踐.:);()
2024-11-18 12:09
【摘要】函數(shù)的極值與導(dǎo)數(shù)aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0,那么函數(shù)y=f(x)在為這個區(qū)間內(nèi)的增函數(shù);如果在這個區(qū)
2024-11-18 12:08
【摘要】第2課時橢圓的簡單性質(zhì)a,b,c之間的關(guān)系.,并能利用簡單幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程.,討論研究其幾何性質(zhì),使學(xué)生初步嘗試?yán)脵E圓的標(biāo)準(zhǔn)方程來研究橢圓的幾何性質(zhì)的基本方法,加深對曲線與方程的理解,同時提高分析問題和解決問題的能力.1998年12月19日,太原衛(wèi)星發(fā)射中心為摩托羅拉公司(美國)
2024-11-19 20:36
【摘要】2020/12/242020/12/24復(fù)習(xí)回顧平面內(nèi),動點(diǎn)p到兩個定點(diǎn)F1F2的距離和是常數(shù),p形成的軌跡?12122PFPFaFF???12122PFPFaFF???12122PFPFaFF???無軌跡.軌跡為線段軌跡為橢圓2020/12/24
2024-11-17 11:59
【摘要】章末檢測一、選擇題1.物體運(yùn)動的方程為s=14t4-3,則t=5時的瞬時速度為()A.5B.25C.125D.6252.函數(shù)y=x2cosx的導(dǎo)數(shù)為()A.y′=2xcosx-x2sinxB.y′=2xcosx+x
2024-11-19 10:30
【摘要】橢圓單元練習(xí)卷一、選擇題:1.已知橢圓1162522??yx上的一點(diǎn)P,到橢圓一個焦點(diǎn)的距離為3,則P到另一焦點(diǎn)距離為()A.2B.3C.5D.72.中心在原點(diǎn),焦點(diǎn)在橫軸上,長軸長為4,短軸長為2,則橢圓方程是()A.22143xy??B.2
2024-11-15 13:24
【摘要】拋物線的幾何性質(zhì)前面我們已學(xué)過橢圓與雙曲線的幾何性質(zhì),它們都是通過標(biāo)準(zhǔn)方程的形式研究的,現(xiàn)在請大家想想拋物線的標(biāo)準(zhǔn)方程、圖形、焦點(diǎn)及準(zhǔn)線是什么?一、復(fù)習(xí)回顧:圖形方程焦點(diǎn)準(zhǔn)線lFyxOlFyxOlFyxO
2024-11-18 08:56
【摘要】關(guān)于x軸、y軸、原點(diǎn)對稱圖形方程范圍對稱性頂點(diǎn)離心率)0(1????babyax2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)),b(abxay001????2222Rxayay????,或關(guān)于x軸、y軸、原點(diǎn)對稱)1
2024-11-17 17:10
【摘要】雙曲線的簡單幾何性質(zhì)(2)焦點(diǎn)在x軸上的雙曲線的幾何性質(zhì)雙曲線標(biāo)準(zhǔn)方程:YX12222??byax0??byax1、范圍:x≥a或x≤-a2、對稱性:關(guān)于x軸,y軸,原點(diǎn)對稱。3、頂點(diǎn):A1(-a,0),A2(a,0)4、軸:實(shí)軸A1A2虛軸
2024-11-17 23:34
【摘要】2020/12/24導(dǎo)數(shù)第一章2020/12/24??????...:,.?高度是多少距水面的最大他度速如何求他在某時刻的示表可用函數(shù)單位度運(yùn)動員相對于水面的高后已知起跳賽的瞬間照片中鎖定了運(yùn)動員比你看過高臺跳水比賽嗎10569412????ttthmhs2020/12/24
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)橢圓及其標(biāo)準(zhǔn)方程課后知能檢測新人教B版選修1-1一、選擇題1.已知平面內(nèi)兩定點(diǎn)A,B及動點(diǎn)P,設(shè)命題甲是:“|PA|+|PB|是定值”,命題乙是:“點(diǎn)P的軌跡是以A,B為焦點(diǎn)的橢圓”,那么甲是乙的()A.充分不必要條件B.必要不充分條件
2024-12-03 11:30
【摘要】函數(shù)的單調(diào)性與導(dǎo)數(shù)(4).對數(shù)函數(shù)的導(dǎo)數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數(shù)函數(shù)的導(dǎo)數(shù):.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos
【摘要】導(dǎo)數(shù)的幾何意義一、基礎(chǔ)過關(guān)1.下列說法正確的是()A.若f′(x0)不存在,則曲線y=f(x)在點(diǎn)(x0,f(x0))處就沒有切線B.若曲線y=f(x)在點(diǎn)(x0,f(x0))處有切線,則f′(x0)必存在C.若f′(x0)不存在,則曲線y=f(x)在點(diǎn)(x0,
【摘要】拋物線和簡單幾何性質(zhì)一、教學(xué)目標(biāo)(一)知識教學(xué)點(diǎn)使學(xué)生理解并掌握拋物線的幾何性質(zhì),并能從拋物線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)這些性質(zhì).(二)能力訓(xùn)練點(diǎn)從拋物線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)拋物線的性質(zhì),從而培養(yǎng)學(xué)生分析、歸納、推理等能力.(三)學(xué)科滲透點(diǎn)使學(xué)生進(jìn)一步掌握利用方程研究曲線性質(zhì)的基本方法,加深對直角坐標(biāo)系中曲線方程的關(guān)系概念
2024-11-19 19:28