【摘要】第一篇:放縮法、反證法證明不等式10 放縮法、反證法證明不等式 教學(xué)目標(biāo): 掌握放縮法和反證法證明不等式教學(xué)難點(diǎn): 放縮法和反證法教學(xué)過程: 一、簡(jiǎn)要回顧已經(jīng)學(xué)習(xí)過的幾種不等式證明的方法 ...
2025-10-18 23:14
【摘要】第一篇:關(guān)于和式的數(shù)列不等式證明方法 關(guān)于“和式”的數(shù)列不等式證明方法 方法:先求和,再放縮 例 1、設(shè)數(shù)列{an}滿足a1=0且an 1n,2an+1=1+an+1gan,n ?N*,記...
2025-10-19 23:38
【摘要】第一篇:不等式證明20法 不等式證明方法大全 1、比較法(作差法) 在比較兩個(gè)實(shí)數(shù)a和b的大小時(shí),可借助a-b的符號(hào)來判斷。步驟一般為:作差——變形——判斷(正號(hào)、負(fù)號(hào)、零)。變形時(shí)常用的方法有...
2025-10-19 23:16
【摘要】第一篇:向量法證明不等式 向量法證明不等式 高中新教材引入平面向量和空間向量,將其延伸到歐氏空間上的n維向量,向量的加、減、,則高中階段的向量即為n=2,,b是歐氏空間的兩向量,且a=(x1,x2...
2025-10-27 17:00
【摘要】第一篇:怎樣用換元法證明不等式 怎樣用換元法證明不等式 陸世永 我們知道,無(wú)論在中學(xué),還是在大學(xué),不等式的證明都是一個(gè)難點(diǎn)。人們?cè)谧C明不等式時(shí)創(chuàng)造了許多方法,其中有換元法。下面我們探索怎樣用換元...
2025-10-19 03:59
【摘要】第一篇:構(gòu)造函數(shù)證明數(shù)列不等式答案 構(gòu)造函數(shù)證明數(shù)列不等式答案 : ln22+ln33+ln44+L+ ln33 nn 3- n 5n+66 (n?N).* 解析:先構(gòu)造函數(shù)有l(wèi)...
2025-10-19 06:10
【摘要】第一篇:北京市陳經(jīng)綸中學(xué)高三數(shù)學(xué)-用放縮法證明不等式 用放縮法證明不等式 一.引入 (1)a克糖水中有b克糖(ab0),若再添上m克糖(m0),則糖水就變甜了,試根據(jù)這個(gè)事實(shí)提 煉一個(gè)不...
2025-10-18 16:58
【摘要】第一篇:賦值法證明不等式 賦值法證明不等式的有關(guān)問題 1、已知函數(shù)f(x)=lnx (1)、求函數(shù)g(x)=(x+1)f(x)-2x+2(x31)的最小值; (2)、當(dāng)0 222a(b-a)...
2025-10-20 06:45
【摘要】第一部分:三個(gè)重要的放縮一、放縮后轉(zhuǎn)化為等比數(shù)列。例1.滿足:(1)用數(shù)學(xué)歸納法證明:(2),求證:二、放縮后裂項(xiàng)迭加例2.?dāng)?shù)列,,其前項(xiàng)和為求證:(1)用表示出(2)若在上恒成立,求的取值范圍(3)證明:
2025-06-16 12:41
【摘要】第一篇:數(shù)學(xué)所有不等式放縮技巧及證明方法 高考數(shù)學(xué)所有不等式放縮技巧及證明方法 一、裂項(xiàng)放縮 例1.(1)求 例2.(1)求證:1+(2)求證: /7?4kk=1n22-1的值;(2)求證:...
2025-10-19 03:50
【摘要】第一篇:用向量可以證明不等式 運(yùn)用向量可以證明不等式 向量一章中有兩處涉及到不等式,其一,rara+rrrb3a-b或-rrrb£a-b;其二,rragbr£arb。前者的幾何意義是三角形兩邊之和...
2025-10-26 12:20
【摘要】近年來在高考解答題中,常滲透不等式證明的內(nèi)容,而不等式的證明是高中數(shù)學(xué)中的一個(gè)難點(diǎn),它可以考察學(xué)生邏輯思維能力以及分析問題和解決問題的能力。特別值得一提的是,高考中可以用“放縮法”證明不等式的頻率很高,它是思考不等關(guān)系的樸素思想和基本出發(fā)點(diǎn),?有極大的遷移性,對(duì)它的運(yùn)用往往能體現(xiàn)出創(chuàng)造性?!胺趴s法”它可以和很多知識(shí)內(nèi)容結(jié)合,對(duì)應(yīng)變能力有較高的要求。因?yàn)榉趴s必須有目標(biāo),而且要恰到
2025-04-16 23:50
【摘要】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2025-10-25 17:10
【摘要】第一篇:導(dǎo)數(shù)與數(shù)列不等式的綜合證明問題 導(dǎo)數(shù)與數(shù)列不等式的綜合證明問題 典例:(2017全國(guó)卷3,21)已知函數(shù)f(x)=x-1-alnx。(1)若f(x)30,求a的值; (2)設(shè)m為整數(shù),且...
2025-10-19 18:52
【摘要】精品資源數(shù)列中的不等式恒成立不等式的恒成立問題是學(xué)生較難理解和掌握的一個(gè)難點(diǎn),以數(shù)列為載體的不等式恒成立問題的檔次更高、綜合性更強(qiáng),是高三第二輪復(fù)習(xí)中不可多得的一個(gè)專題.例1:(2003年新教材高考題改編題)設(shè)為常數(shù),數(shù)列的通項(xiàng)公式為,若對(duì)任意不等式恒成立,求的取值范圍.解:,故等價(jià)于. ① ⑴當(dāng)時(shí),①式即為 ,此式對(duì)恒成立,故.(注意小于最小值,為什么不能
2025-06-25 02:18