【摘要】簡(jiǎn)單的邏輯聯(lián)結(jié)詞課題第2課時(shí)計(jì)劃上課日期:教學(xué)目標(biāo)知識(shí)與技能1.進(jìn)一步了解“或”、“且”、“非”作為邏輯聯(lián)結(jié)詞的含義,掌握“p或q”、“p且q”以及“非p”命題的真假規(guī)律]2.能夠應(yīng)用真值表解決相關(guān)問(wèn)題[過(guò)程與方法問(wèn)題鏈導(dǎo)學(xué),講練結(jié)合情感態(tài)度與價(jià)值觀
2024-12-05 09:30
【摘要】數(shù)乘運(yùn)算上一節(jié)課,我們把平面向量的有關(guān)概念及加減運(yùn)算擴(kuò)展到了空間.平面向量空間向量加法減法運(yùn)算加法:三角形法則或平行四邊形法則減法:三角形法則運(yùn)算律加法交換律abba???加法結(jié)合律:()()ab
2024-11-18 12:14
【摘要】坐標(biāo)表示1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個(gè)單位向量(,)pxy則的坐標(biāo)為1212(,),(,)aaabbb??(2)若11221122(,)
【摘要】簡(jiǎn)單的邏輯連接詞課題第1課時(shí)計(jì)劃上課日期:教學(xué)目標(biāo)知識(shí)與技能1.了解“或”、“且”作為邏輯聯(lián)結(jié)詞的含義,掌握“p或q”、“p且q”命題的真假規(guī)律;2.了解邏輯聯(lián)結(jié)詞“非”的含義,能寫(xiě)出簡(jiǎn)單命題的“非p”命題過(guò)程與方法問(wèn)題鏈導(dǎo)學(xué),講練
【摘要】課題.3空間向量運(yùn)算的坐標(biāo)表示學(xué)習(xí)目標(biāo):知識(shí)與技能掌握空間向量加法、減法、數(shù)乘、數(shù)量積運(yùn)算的坐標(biāo)表示以及向量的長(zhǎng)度、夾角公式的坐標(biāo)表示,并能初步應(yīng)用這些知識(shí)解決簡(jiǎn)單的立體幾何問(wèn)題.過(guò)程與方法①通過(guò)將空間向量運(yùn)算與熟悉的平面向量的運(yùn)算進(jìn)行類(lèi)比,使學(xué)生掌握空間向量運(yùn)算的坐標(biāo)表示,滲透類(lèi)比的數(shù)學(xué)方法;
2024-12-03 00:16
【摘要】空間向量運(yùn)算的坐標(biāo)表示【學(xué)習(xí)目標(biāo)】⒈掌握空間向量坐標(biāo)運(yùn)算的規(guī)律;,判斷兩個(gè)向量共線或垂直;【自主學(xué)習(xí)】若123(,,)aaaa?,123(,,)bbbb?,則_________??ab,_____________??ab,_____________()??
2024-11-19 23:24
【摘要】aBAOlP空間向量的數(shù)乘運(yùn)算【學(xué)習(xí)目標(biāo)】理解空間向量共線、共面的充要條件【自主學(xué)習(xí)】1.共線向量與平面向量類(lèi)似,如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量,記作ba??//.當(dāng)向量a?、b?共線(或a?//b?)時(shí),表示a?、b
2024-12-05 06:40
【摘要】【課堂新坐標(biāo)】(教師用書(shū))2021-2021學(xué)年高中數(shù)學(xué)+2空間向量及其線性運(yùn)算共面向量定理課后知能檢測(cè)蘇教版選修2-1一、填空題1.下列命題中真命題的個(gè)數(shù)是________.①空間中任兩個(gè)單位向量必相等;②將空間中所有的單位向量移到同一起點(diǎn),則它們的終點(diǎn)構(gòu)成一個(gè)圓;③若兩個(gè)非零向量a,b滿足a=kb,則
2024-12-05 09:29
【摘要】2.4向量的數(shù)量積前面我們學(xué)習(xí)過(guò)向量的加減法,實(shí)數(shù)與向量的乘法,知道a+b,a-b,λa(λ∈R)仍是向量,大家自然要問(wèn):兩個(gè)向量是否可以相乘?相乘后的結(jié)果是什么?是向量還是數(shù)?1.已知兩個(gè)非零向量a與b,它們的夾角為θ,我們把數(shù)量________叫做a與b的數(shù)量積,記作__________
2024-12-05 10:15
【摘要】§3.空間向量的正交分解及其坐標(biāo)表示知識(shí)點(diǎn)一向量基底的判斷已知向量{a,b,c}是空間的一個(gè)基底,那么向量a+b,a-b,c能構(gòu)成空間的一個(gè)基底嗎?為什么?解∵a+b,a-b,c不共面,能構(gòu)成空間一個(gè)基底.假設(shè)a+b,a-b,c共面,則存在x,
2024-12-08 01:49
【摘要】向量的數(shù)量積(三)一、填空題1.已知向量a=(2,1),b=(-1,k),a2(2a-b)=0,則k=________.2.已知a=(-3,2),b=(-1,0),向量λa+b與a-2b垂直,則實(shí)數(shù)λ的值為_(kāi)_______.3.平面向量a與b的夾角為60°,a=(2,
【摘要】第三章空間向量與立體幾何1、坐標(biāo)運(yùn)算2、共線向量定理3、共面向量定理6、空間向量基本定理7、立體幾何中的向量方法8、角、距離
2025-04-04 05:16
【摘要】雙曲線的標(biāo)準(zhǔn)方程一、回顧1、橢圓的定義是什么?2、橢圓的標(biāo)準(zhǔn)方程、焦點(diǎn)坐標(biāo)是什么?定義圖象方程焦點(diǎn)關(guān)系y·oxF1F2··yoF1F2··|MF1|+|MF2|=2a(2
2024-11-17 19:28
【摘要】解及其坐標(biāo)表示lαOP例1在平面內(nèi)的一條直線,如果和這個(gè)平面的一條斜線的射影垂直,那么它也和這條斜線垂直。已知:如圖,PO,PA分別是平面α的垂線,斜線,AO是PA在平面α內(nèi)的射影,.:,,PAlOAll???求證且?AlαOP.,,OAPOal
【摘要】§圓錐曲線教學(xué)目標(biāo),經(jīng)歷從具體情境中抽象出橢圓、拋物線模型的過(guò)程,掌握它們的定義,并能用數(shù)學(xué)符號(hào)或自然語(yǔ)言的描述。2.通過(guò)用平面截圓錐面,感受、了解雙曲線的定義。能用數(shù)學(xué)符號(hào)或自然語(yǔ)言描述雙曲線的定義。教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):橢圓、拋物線、雙曲線的定義。難點(diǎn):用數(shù)學(xué)符號(hào)或自然語(yǔ)言描述三種曲線的定義[教
2024-12-08 21:22