freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx學(xué)年人教版數(shù)學(xué)八年級上學(xué)期期中試題word版(含解析)-預(yù)覽頁

2024-12-17 16:53 上一頁面

下一頁面
 

【正文】 利用多邊形的 外 角 以及外角 和為 360176。 ﹣ 120176。 ﹣ 30176。=90176。=45176。 , ∴∠ECD=∠C ED=180176。 , ∴∠BCD=180176。 , ∴∠BCA=∠A=15176。 B. 75176。 , 綜上所述,該等腰三角形頂角的度數(shù)為 80176。 , ② 80176。 D. 20176。 B. 80176。 ,則它頂角的度數(shù)是( ) A. 80176。 或 50176。 角是頂角時,三角形的頂角為 80176。2=20176。 , AB=BC=CD=DE=EF,則 ∠DEF 等于( ) A. 90176。 【考點】 等腰三角形的性質(zhì);三角形內(nèi)角和定理;三角形的外角性質(zhì). 【分析】 根據(jù)已知條件,利用等腰三角形的性質(zhì)及三角形的內(nèi)角和外角之間的關(guān)系進行計算. 【解答】 解: ∵AB=BC=CD=DE=EF , ∠A=15176。=30176。=120176。 ﹣ 15176。 ﹣ 90176。 ﹣ 90176。 ﹣( ∠EDF+∠EFC ) =180176。 這一隱含的條件. 9.在直角坐標(biāo)系中有 A, B 兩點,要在 y軸上找一點 C,使得它到 A, B的距離之和最小,現(xiàn)有如下四種方案,其中正確的是( ) A. B. C. D. 【考點】 軸對稱 最短路線問題;坐標(biāo)與圖形性質(zhì). 【分析】 根據(jù)在直線 L上的同側(cè)有兩個點 A、 B,在直線 L上有到 A、 B的距離之和最短的點存在,可以通過軸對稱來確定,即作出其中一點關(guān)于直線 L的對稱點,對稱點與另一點的連線與直線 L的交點就是所要找的點. 【解答】 解:若在直角坐標(biāo)系中有 A, B兩點,要在 y軸上找一點 C,使得它到 A, B的距離之和最小 , 則可以過點 A作關(guān)于 y軸的對稱點,再連接 B和作出的對稱點連線和 y軸的交點即為所求, 由給出的四個選項可知選項 C滿足條件. 故選 C. 【點評】 本題考查了軸對稱﹣最短路線問題,在一條直線上找一點使它到直線同旁的兩個點的距離之和最小,所找的點應(yīng)是其中已知一點關(guān)于這條直線的對稱點與已知另一點的交點. 10.如下圖,已知 △ABE≌△ACD , ∠1=∠2 , ∠B=∠C ,不正確的等式是( ) A. AB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DE 【考點】 全等三角形的性質(zhì). 【分析】 根據(jù)全等三角形 的性質(zhì),全等三角形的對應(yīng)邊相等,全等三角形的對應(yīng)角相等,即可進行判斷. 【解答】 解: ∵△ABE≌△ACD , ∠1=∠2 , ∠B=∠C , ∴AB=AC , ∠BAE=∠CAD , BE=DC, AD=AE, 故 A、 B、 C正確; AD的對應(yīng)邊是 AE而非 DE,所以 D錯誤. 故選 D. 【點評】 本題主要考查了全等三角形的性質(zhì),根據(jù)已知的對應(yīng)角正確確定對應(yīng)邊是解題的關(guān)鍵. 二.填空題( 本大題 共 6小題 ,每小題 4分,共 24) 11. n邊形的每個內(nèi)角都為 135176。 根據(jù)多邊形的 外 角和定理可得: 正 n邊形的 邊數(shù) = 845360 ???? . 故答案為: 8. 【點評】 本題考查了多邊形的 外 角 以及外角 和,正 n邊形的每個 外 角都等于正多邊形的 外 角和 247。=30176。 . 故答案為: 75176。 , ∴DC⊥AC , ∵AD 平分 ∠BAC , ∴DE=DC=4cm . 故答案為: 4. 【點評】 本題考查的是角平分線的性質(zhì),熟知角的平分線上的點到角的兩邊的距離相等是解答此題的關(guān)鍵. 14.如圖, △ABC 中, ∠ACB=90 ゜,將 △ABC 的邊 BC沿 ∠ACB 的平分線 CD折疊到 B′C , B′在 AC上.若 ∠B′DA=20 ゜, 則 ∠B= 55゜ . 【考點】 翻折變換(折疊問題). 【分析】 根據(jù)折疊性質(zhì)得出 ∠ACD=∠BCD , ∠BDC=∠B′DC ,求出 ∠CDB=80176。 , ∠BCD=45176。 , ∠BCD=45176。=55176。 . 【考點】 等腰三角形的性質(zhì). 【分析】 由等腰三角形 ABC中, AB=AC, ∠A=40176。 ﹣ ∠A=50176。 . 故答案為: 20176。 . ∵BD 平分 ∠ABC , ∴∠ABD=∠CBD=90176。 . ∵∠BDC=80 176。 ﹣ 80176。 , ∠A=30176。 , ∴AD=BD , ∴∠ABD=∠A=30176。 ﹣ 30176。=30176。 ,即 AG與 AD 垂直. 【解答】 ( 1)證明: ∵BE⊥AC , CF⊥AB , ∴∠HFB=∠HEC=90176。 ,從而可以證到 △ABC≌△NEC ,進而可 以證到 AC=NC,∠ACN=∠BCE=90176。 . ∵∠DAE=90176。 ﹣ ∠CBE=135176。 ﹣ 180176。 . ∴△ACN 為等腰直角三角形. 【點評】 本題考查了全等三角形的判定與性質(zhì)、平行線的性質(zhì)、等腰直角三角形的判定與性質(zhì)、多邊形的內(nèi)角與外角等知識,滲透了變中有不變的辯證思想,是一道好題.
點擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1