【摘要】.第1章行列式(作業(yè)1)一、填空題1.設(shè)自然數(shù)從小到大為標準次序,則排列13…24…的逆序數(shù)為,排列13……2的逆序數(shù)為.2.在6階行列式中,這項的符號為.3.所有n元排列中,奇排列的個數(shù)共個.二、選擇題=().(A)(B)(C)
2025-08-05 16:28
【摘要】二階行列式三階行列式小結(jié)思考題?從分析用消元法解二元線性方程組入手?給出二階、三階行列式定義及計算第一節(jié)二階與三階行列式機動目錄上頁下頁返回結(jié)束用消元法解二元線性方程組???????.,22221211212111
2025-05-04 18:02
【摘要】《線性代數(shù)》下頁結(jié)束返回2021-2021第一學期線性代數(shù)任課教師:田祥部門:信息學院辦公室:文理大樓721室E-mail:下頁《線性代數(shù)》下頁結(jié)束返回一、研究對象二、核心方法下頁以討論線性方程組的解為基礎(chǔ),研究線性空間的結(jié)構(gòu)、線性變換的形式
2025-05-10 10:27
【摘要】主要內(nèi)容nnnnnnaaaaaaaaaD?????212222111211?nnnnjjjjjjjjjNaaa??????21212121)()1(5條?????????)(,0)(,2211sisiD
2024-12-23 15:15
【摘要】習題課件線性代數(shù)——向量組線性相關(guān)性習題講解習題課件第四章向量組的線性相關(guān)性一、要點復(fù)習二、作業(yè)講解三、典型例題介紹習題課件一、要點復(fù)習一個向量可由一組向量線性表示一組向量可由另一組向量線性表示兩組向量可相互線性表示(等價)向量組的線性相關(guān)性線性相關(guān)線性無關(guān)線性表
2025-01-20 10:16
【摘要】第1章行列式行列式是線性代數(shù)的一個重要組成部分.它是研究矩陣、線性方程組、特征多項式的重要工具.本章介紹了n階行列式的定義、性質(zhì)及計算方法,最后給出了它的一個簡單應(yīng)用——克萊姆法則.2第1章行列式?n階行列式的定義?行列式的性質(zhì)?行列式按行(列)展開?克萊姆法則—行列式的一
2025-05-05 12:01
【摘要】EXCEL的矩陣運算例:x=(ATA)-1ATb已知資料(結(jié)果)位置選擇『函數(shù)類別』及『函數(shù)名稱』(可利用『說明』來查“MMULT”的詳細用法),輸入“TRANSPOSE(“因為AT是一反矩陣,必須先用反矩陣功能轉(zhuǎn)換,以選擇矩陣範圍(也可以直接輸入)。.A範圍
2025-08-05 08:58
【摘要】用消元法解二元線性方程組???????.,22221211212111bxaxabxaxa??1??2??:122a?,2212221212211abxaaxaa????:212a?,1222221212112abxaaxaa??,得兩式相減消去2x一、二階行列式的引入;21222112112
2025-01-15 15:51
【摘要】行列式與矩陣n階行列式的概念行列式的性質(zhì)與計算Cramer法則第六章矩陣及其計算逆矩陣與矩陣的秩分塊矩陣矩陣的初等變換n階行列式第一節(jié)學習重點余子式與代數(shù)余子式的概念n階行列式的概念●行列式的引入引
2024-10-16 21:34
2025-08-05 17:26
【摘要】第二章行列式行列式在歷史上原為求解線性方程組而引入,但在線性代數(shù)和其它數(shù)學領(lǐng)域以及工程技術(shù)中,行列式都是一個很重要的工具。本章主要介紹行列式的定義、性質(zhì)及其計算方法?!於A、三階行列式,全排列及其逆序數(shù)§n階行列式的定義§行列式的性質(zhì)(1)§行列式性質(zhì)(2)
2024-11-03 20:42
【摘要】1線性代數(shù)與空間解析幾何哈工大數(shù)學系代數(shù)與幾何教研室2?學時:64+32學時?成績:100分平時:30分,期末:70分.《線性代數(shù)與解析幾何》序言3線性代數(shù)的應(yīng)用:有很多實際問題,都可以轉(zhuǎn)成線性代數(shù)的方法去解決.在工程學、計算機科學、物理學
2025-04-28 22:31
【摘要】上海八中許穎龍春朝2022年12月15日???????2268534yxyx2、用行列式解二元一次方程組解:,0486834????D,9662235???xD4822854??yD???????????12DDyDDxyx方
2025-01-08 00:11
【摘要】1第三章行列式第一節(jié)n階行列式的定義2.2112221122211211aaaaaaaa??二階和三階行列式是由解二元和三元線性方程組引入的.二階行列式對角線法(1)二階行列式共有2!項,即2項.(2)每項都是位于不同行不同列的兩個元素的乘積.(3)
2025-05-05 18:15
【摘要】Cramer法則?n階行列式的定義、性質(zhì)及計算方法?克拉默(Cramer)法則第二章行列式1.二階行列式對于給定的二元線性方程組11112212112222(1)axaxbaxaxb???????其系數(shù)矩陣11122122aa
2025-05-07 00:51