【摘要】不等式證明方法(五)判別式法、構(gòu)造法、逆代法一、判別法通過(guò)對(duì)所證不等式的觀察、分析,構(gòu)造出二次方程,證明中借助于二次方程的判別式,從而使不等式得證。.320,,:,2,,,,:12222azyxazyxazyxRzyx且不大于均不小于求證且已知例???????044)(44:2)(:2222222?????
2025-08-23 13:47
【摘要】第一篇:高一不等式解法及放縮法證明練習(xí) 不等式 1.設(shè)a,b,c,d是任意正數(shù),求證:1 2.已知x,y,z 3.求證:-1)1+ 4.已知a,b,c?R,求證:a+b+c3ab+bc+...
2025-10-19 09:51
【摘要】第一篇:均值不等式的證明 均值不等式的證明 設(shè)a1,a2,a3...an是n個(gè)正實(shí)數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡(jiǎn)單的詳細(xì)過(guò)程,謝謝!...
2025-10-27 22:00
【摘要】第一篇:用均值不等式證明不等式 用均值不等式證明不等式 【摘要】:不等式的證明在競(jìng)賽數(shù)學(xué)中占有重要地位.本文介紹了用均值不等式證明幾個(gè)不等式,我們?cè)谧C明不等式時(shí),常用到均值不等式。要求我們要認(rèn)真分...
2025-10-19 10:42
【摘要】第一篇:基本不等式與不等式基本證明 課時(shí)九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應(yīng)用 基本不等式在求解最值、值域等方面有著重要的應(yīng)用,利用基本不等式時(shí),關(guān)鍵在對(duì)已知條件的靈活...
2025-10-20 03:11
【摘要】不等式的證明——綜合法導(dǎo)入新課1.證明().2.比較與的大小,并證明你的結(jié)論.嘗試探索,建立新知,求證例1已知證明:因?yàn)?,則所以故①利用某些已經(jīng)證明過(guò)的不等式和不等式的性質(zhì)推導(dǎo)出所要證明的不等式成立,這種證明方法通常叫做綜合法.②綜合法的思路是“由因
2025-07-26 00:13
【摘要】第一篇:不等式的證明(推薦) 不等式的基本性質(zhì) 1、不等式:(1)a2+2f2a,(2)a2+b232(a-b-1),(3)a2+b2fab恒成立的個(gè)數(shù)是() (A)0(B)1(C)2(D)3[...
2025-10-30 22:00
【摘要】立足教育開(kāi)創(chuàng)未來(lái)·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國(guó)版1第六章不等式第講(第一課時(shí))立足教育開(kāi)創(chuàng)未來(lái)·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國(guó)版2考點(diǎn)搜索●比較法●綜合法●分析法
2025-08-11 14:49
【摘要】不等式的證明(習(xí)題課)1、比較法(1)比較法證明不等式的步驟作差---變形---判斷符號(hào)----得出結(jié)論(2)比較法經(jīng)常證明什么樣的不等式高次整式多項(xiàng)式、所證不等式兩邊有相同或局部相同的部分(3)作差之后變形的思維完全平方、因式積
2025-10-28 21:52
【摘要】課題:含有絕對(duì)值的不等式問(wèn)題當(dāng)時(shí),則有:那么與及的大小關(guān)系怎樣?絕對(duì)值的定義:問(wèn)題這需要討論:當(dāng)綜上可知:當(dāng)當(dāng)定理1:如果a,b是實(shí)數(shù),則當(dāng)且僅當(dāng)時(shí),等號(hào)成立.(1)從向量的角度看:不共線時(shí),由于定理1與三角形之間的這種聯(lián)
2025-08-05 15:37
【摘要】2020年名師課堂輔導(dǎo)講座—高中部分[學(xué)習(xí)內(nèi)容]:1、不等式的性質(zhì)(1)aba-b0a=ba-b=0abbb,bcac(4)ab,c∈Ra+cb+c
2024-11-19 02:58
【摘要】例甲、乙兩商店以同樣價(jià)格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案:在甲店累計(jì)購(gòu)買100元商品后,再購(gòu)買的商品按原價(jià)的90﹪收費(fèi);在乙店累計(jì)購(gòu)買50元商品后,再購(gòu)買的商品按原價(jià)的95﹪收費(fèi)。顧客怎樣選擇商店購(gòu)物獲得更大優(yōu)惠?1、根據(jù)下面的兩種移動(dòng)電話計(jì)費(fèi)方式表,考慮下列問(wèn)題:根據(jù)通話時(shí)間試選擇哪種通話方式合算。2
2025-01-08 20:25
【摘要】課題:實(shí)際問(wèn)題與一元一次不等式北京市永豐中學(xué)錢健教學(xué)目標(biāo)知識(shí)技能進(jìn)一步掌握一元一次不等式的解法;會(huì)從實(shí)際問(wèn)題中抽象出數(shù)學(xué)模型,并用一元一次不等式解決簡(jiǎn)單的實(shí)際問(wèn)題。過(guò)程方法通過(guò)觀察、實(shí)踐、討論等活動(dòng),積累利用一元一次不等式解決實(shí)際問(wèn)題的經(jīng)驗(yàn),提高分類考慮、討論問(wèn)題的能力,感知方程與不等式的內(nèi)在聯(lián)系,
2025-01-08 19:45
【摘要】第一篇:均值不等式證明 均值不等式證明 一、已知x,y為正實(shí)數(shù),且x+y=1求證 xy+1/xy≥17/ 41=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥ 2當(dāng)且僅當(dāng)xy=...
2025-10-27 18:15
【摘要】第一篇:不等式證明[精選] §14不等式的證明 不等式在數(shù)學(xué)中占有重要地位,由于其證明的困難性和方法的多樣性,,而變形的依據(jù)是不等式的性質(zhì),不等式的性分類羅列如下:不等式的性質(zhì):a3b?a-b0...