【摘要】第一篇:均值不等式教案3 課題:§:第3課時(shí)授課時(shí)間:授課類(lèi)型:新授課 【教學(xué)目標(biāo)】 1.知識(shí)與技能:了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用。 2.過(guò)程與方法:培養(yǎng)學(xué)生的探究能力以及分析問(wèn)題、...
2024-11-05 17:45
【摘要】第一篇:均值不等式教案2 課題:§課時(shí):第2課時(shí)授課時(shí)間:授課類(lèi)型:新授課 【教學(xué)目標(biāo)】 1.知識(shí)與技能:利用均值定理求極值與證明。 2.過(guò)程與方法:培養(yǎng)學(xué)生的探究能力以及分析問(wèn)題、解決問(wèn)題的...
2024-10-27 22:57
【摘要】第一篇:高三數(shù)學(xué)均值不等式 3eud教育網(wǎng)://百萬(wàn)教學(xué)資源,完全免費(fèi),無(wú)須注冊(cè),天天更新! 均值不等式教案 教學(xué)目標(biāo): 教學(xué)重點(diǎn): 推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)...
2024-11-06 22:00
【摘要】均值不等式均值不等式又名基本不等式、均值定理、重要不等式。是求范圍問(wèn)題最有利的工具之一,在形式上均值不等式比較簡(jiǎn)單,但是其變化多樣、使用靈活。尤其要注意它的使用條件(正、定、等)。1.(1)若,則 (2)若,則 (當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則 (2)若,則 (當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)3.均值不等式鏈:若都是正數(shù),則,當(dāng)且僅
2025-03-25 07:11
【摘要】第一篇: 均值不等式的常見(jiàn)題型 一基本習(xí)題 2、已知正數(shù)a,b滿足ab=4,那么2a+3b的最小值為()A10B12C43D46 3、已知a>0,b>0,a+b=1則11+的取值范圍是()ab...
2024-10-27 08:34
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》審校:王偉教學(xué)目標(biāo)?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用。?教學(xué)重點(diǎn):?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定
2025-08-04 10:01
2025-08-04 09:13
【摘要】不等式不等式不等式不等式平均值不等式平均值不等式
2025-04-29 00:24
【摘要】2020/12/13洪湖二中:王愛(ài)平2020年12月2020/12/13設(shè)一元二次方程對(duì)應(yīng)的二次函數(shù)為(1)方程在區(qū)間內(nèi)有兩個(gè)不等的實(shí)根的充要條件是(2)方程在區(qū)間內(nèi)有兩個(gè)不等的實(shí)根的充要條件是(3)方程有一根大于,另一根小于的充要條件是(1)oxyk(3)
2024-11-06 21:52
【摘要】精品資源不等式的實(shí)際應(yīng)用知識(shí)梳理:1、不等式應(yīng)用題,題源豐富,綜合性強(qiáng),是高考應(yīng)用題命題的重點(diǎn)內(nèi)容之一;這類(lèi)應(yīng)用題常常與函數(shù)、數(shù)列、立體幾何、解析幾何等相綜合,難度可大可小,具有一定的彈性;2、利用不等式解決實(shí)際應(yīng)用問(wèn)題關(guān)鍵是建立問(wèn)題的數(shù)學(xué)模型或轉(zhuǎn)化為相應(yīng)的不等式(組);3、解決不等式應(yīng)用題的三個(gè)步驟;一、訓(xùn)練反饋:1(2004上海卷理16)、某地2004年第一季度應(yīng)
2025-06-24 19:24
【摘要】第一篇:巧用二元均值不等式證明一組優(yōu)美不等式 巧用二元均值不等式證明不等式 江蘇省常熟市中學(xué) 査正開(kāi)215500 ***zhazhengkai3@ 二元均值不等式是高中數(shù)學(xué)的重要內(nèi)容,也是后...
2024-11-05 23:06
【摘要】武勝中學(xué)高2009級(jí)培優(yōu)講座柯西不等式及應(yīng)用武勝中學(xué)周迎新柯西不等式:設(shè)a1,a2,…an,b1,b2…bn均是實(shí)數(shù),則有(a1b1+a2b2+…+anbn)2≤(a12+a22+…an2)(b12+b22+…bn2)等號(hào)當(dāng)且僅當(dāng)ai=λbi(λ為常數(shù),i=1,,…n)時(shí)取到。注:二維柯西不等式:(一)、柯西不等式的證明柯西不等式有多種證明方法,你能怎么嗎?
2025-06-23 14:32
【摘要】2011級(jí)數(shù)學(xué)導(dǎo)學(xué)案即使干著似乎是徒勞無(wú)益的事情,也應(yīng)該盡力而為?!炀挡坏仁剑?)學(xué)習(xí)目標(biāo):1、理解均值不等式,并能運(yùn)用均值不等式解決一些較為簡(jiǎn)單的問(wèn)題;2、認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái)的,體會(huì)思考與發(fā)現(xiàn)的過(guò)程。重點(diǎn)難點(diǎn):重點(diǎn):理解均值不等式;難點(diǎn):均值不等式的應(yīng)用。一、探求新知如何用代數(shù)法證明均值
2025-07-23 23:58
【摘要】例1、甲、乙兩電腦批發(fā)商每次在同一電腦耗材廠以相同價(jià)格購(gòu)進(jìn)電腦芯片。甲、乙兩公司共購(gòu)芯片兩次,每次的芯片價(jià)格不同,甲公司每次購(gòu)10000片芯片,乙公司每次購(gòu)10000元芯片,兩次購(gòu)芯片,哪家公司平均成本低?請(qǐng)給出證明過(guò)程。分析:設(shè)第一、第二次購(gòu)芯片的價(jià)格分別為每片a元和b元,列出甲、乙兩公司的平均價(jià)格,然后利用不等式知識(shí)論證。解:
2024-11-06 21:53
【摘要】復(fù)習(xí)目標(biāo):掌握不等式的相關(guān)知識(shí)在求函數(shù)定義域、值域、單調(diào)性的判斷與證明、一元二次方程根的討論與應(yīng)用1、求下列函數(shù)的定義域:(1)y=(2)y=log(x2-2x-3)(3)y=+lg(3-x)2、求下列函數(shù)的值域:(1)y=2-3x
2024-11-07 02:27