【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》審校:王偉教學(xué)目標(biāo)?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用。?教學(xué)重點(diǎn):?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定
2025-08-04 09:13
【摘要】不等式不等式不等式不等式平均值不等式平均值不等式
2025-04-29 00:24
【摘要】2020/12/13洪湖二中:王愛平2020年12月2020/12/13設(shè)一元二次方程對(duì)應(yīng)的二次函數(shù)為(1)方程在區(qū)間內(nèi)有兩個(gè)不等的實(shí)根的充要條件是(2)方程在區(qū)間內(nèi)有兩個(gè)不等的實(shí)根的充要條件是(3)方程有一根大于,另一根小于的充要條件是(1)oxyk(3)
2025-10-28 21:52
【摘要】精品資源不等式的實(shí)際應(yīng)用知識(shí)梳理:1、不等式應(yīng)用題,題源豐富,綜合性強(qiáng),是高考應(yīng)用題命題的重點(diǎn)內(nèi)容之一;這類應(yīng)用題常常與函數(shù)、數(shù)列、立體幾何、解析幾何等相綜合,難度可大可小,具有一定的彈性;2、利用不等式解決實(shí)際應(yīng)用問(wèn)題關(guān)鍵是建立問(wèn)題的數(shù)學(xué)模型或轉(zhuǎn)化為相應(yīng)的不等式(組);3、解決不等式應(yīng)用題的三個(gè)步驟;一、訓(xùn)練反饋:1(2004上海卷理16)、某地2004年第一季度應(yīng)
2025-06-24 19:24
【摘要】第一篇:巧用二元均值不等式證明一組優(yōu)美不等式 巧用二元均值不等式證明不等式 江蘇省常熟市中學(xué) 査正開215500 ***zhazhengkai3@ 二元均值不等式是高中數(shù)學(xué)的重要內(nèi)容,也是后...
2025-10-27 23:06
【摘要】武勝中學(xué)高2009級(jí)培優(yōu)講座柯西不等式及應(yīng)用武勝中學(xué)周迎新柯西不等式:設(shè)a1,a2,…an,b1,b2…bn均是實(shí)數(shù),則有(a1b1+a2b2+…+anbn)2≤(a12+a22+…an2)(b12+b22+…bn2)等號(hào)當(dāng)且僅當(dāng)ai=λbi(λ為常數(shù),i=1,,…n)時(shí)取到。注:二維柯西不等式:(一)、柯西不等式的證明柯西不等式有多種證明方法,你能怎么嗎?
2025-06-23 14:32
【摘要】2011級(jí)數(shù)學(xué)導(dǎo)學(xué)案即使干著似乎是徒勞無(wú)益的事情,也應(yīng)該盡力而為?!炀挡坏仁剑?)學(xué)習(xí)目標(biāo):1、理解均值不等式,并能運(yùn)用均值不等式解決一些較為簡(jiǎn)單的問(wèn)題;2、認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái)的,體會(huì)思考與發(fā)現(xiàn)的過(guò)程。重點(diǎn)難點(diǎn):重點(diǎn):理解均值不等式;難點(diǎn):均值不等式的應(yīng)用。一、探求新知如何用代數(shù)法證明均值
2025-07-23 23:58
【摘要】例1、甲、乙兩電腦批發(fā)商每次在同一電腦耗材廠以相同價(jià)格購(gòu)進(jìn)電腦芯片。甲、乙兩公司共購(gòu)芯片兩次,每次的芯片價(jià)格不同,甲公司每次購(gòu)10000片芯片,乙公司每次購(gòu)10000元芯片,兩次購(gòu)芯片,哪家公司平均成本低?請(qǐng)給出證明過(guò)程。分析:設(shè)第一、第二次購(gòu)芯片的價(jià)格分別為每片a元和b元,列出甲、乙兩公司的平均價(jià)格,然后利用不等式知識(shí)論證。解:
2025-10-28 21:53
【摘要】復(fù)習(xí)目標(biāo):掌握不等式的相關(guān)知識(shí)在求函數(shù)定義域、值域、單調(diào)性的判斷與證明、一元二次方程根的討論與應(yīng)用1、求下列函數(shù)的定義域:(1)y=(2)y=log(x2-2x-3)(3)y=+lg(3-x)2、求下列函數(shù)的值域:(1)y=2-3x
2025-10-29 02:27
【摘要】一元一次不等式組的應(yīng)用宇宙之大粒子之微火箭之速化工之巧地球之變生物之謎日用之繁數(shù)學(xué)無(wú)處不在------華羅庚,課題引入某班級(jí)在迎世博知識(shí)競(jìng)答中,共設(shè)置了20道問(wèn)題,評(píng)分標(biāo)準(zhǔn)為:對(duì)于每一道
2025-11-12 23:37
【摘要】......第三節(jié):基本不等式1、基本不等式:(1)如果a、b是正數(shù),那么(當(dāng)且僅當(dāng)a=b時(shí)取“=”)(2)對(duì)基本不等式的理解:a>0,b>0,a,b的算術(shù)平均數(shù)是a+b/2,幾何平均數(shù)是_________
2025-06-24 04:49
【摘要】制作:皖黃山市徽州區(qū)第一學(xué)凌榮壽例1、甲、乙兩電腦批發(fā)商每次在同一電腦耗材廠以相同價(jià)格購(gòu)進(jìn)電腦芯片。甲、乙兩公司共購(gòu)芯片兩次,每次的芯片價(jià)格不同,甲公司每次購(gòu)10000片芯片,乙公司每次購(gòu)10000元芯片,兩次購(gòu)芯片,哪家公司平均成本低?請(qǐng)給出證明過(guò)程。分析:設(shè)第一、第二次購(gòu)芯片的價(jià)格分別為每片a元和b元,列出甲、乙兩公司的平均
2025-11-09 01:29
【摘要】均值不等式的綜合應(yīng)用22,0,,222abababBabababCDabABCD????????若A=,,,,試比較、、、的大小。CABD???一.均值定理在比較大小中的應(yīng)用:11,lglg,(lglg),2lg(
2025-11-09 08:48
【摘要】不等式不等式不等式不等式不等式的應(yīng)用.不等式的應(yīng)用性質(zhì)1(傳遞性)如果ab,bc,則ac.性質(zhì)2(加法法則)如果ab,那么a+cb+c.性質(zhì)3(乘法法則)如果a&
2025-11-12 05:33
【摘要】FS-62-08-數(shù)尖02-1/8JXB1無(wú)★代表普通高中、
2025-01-06 02:20