【摘要】教材同步復(fù)習(xí)第一部分第四章三角形知識(shí)要點(diǎn)·歸納第18講全等三角形1.全等三角形的概念能夠①__________的兩個(gè)三角形叫做全等三角形.2.全等三角形的性質(zhì)(1)全等三角形的對(duì)應(yīng)邊②__________,對(duì)應(yīng)角③__________.(2)全等三角形的對(duì)應(yīng)線段(角平分線、
2025-06-20 18:40
【摘要】第14講線段、角、相交線和平行線(3分)考點(diǎn)一直線、射線、線段1.有關(guān)直線的基本事實(shí):_________確定一條直線.2.直線上一點(diǎn)及其一旁的部分叫做射線,這個(gè)點(diǎn)叫射線的_________;直線上兩點(diǎn)及兩點(diǎn)間的部分叫做線段,這兩個(gè)點(diǎn)叫做線段的_________.3.有關(guān)線段的基本事實(shí):兩點(diǎn)之間_____
2025-06-15 08:18
【摘要】UNITFOUR第四單元三角形第26課時(shí)解直角三角形及其應(yīng)用|考點(diǎn)自查|課前考點(diǎn)過(guò)關(guān)考點(diǎn)一解直角三角形在直角三角形中,除直角外,共有5個(gè)元素,即3條邊和2個(gè)銳角.由這些元素中的一些已知元素,求出所有未知元素的過(guò)程叫做解直角三角形.【疑難典析】在Rt△ABC中,∠
2025-06-15 00:15
【摘要】★知識(shí)要點(diǎn)導(dǎo)航★知識(shí)點(diǎn)1★知識(shí)點(diǎn)2★知識(shí)點(diǎn)3★知識(shí)點(diǎn)4★熱點(diǎn)分類解析★考點(diǎn)1★考點(diǎn)2★考點(diǎn)3★知識(shí)要點(diǎn)導(dǎo)航★知識(shí)點(diǎn)1★知識(shí)點(diǎn)2★知識(shí)點(diǎn)
2025-06-12 12:37
【摘要】復(fù)習(xí)十一解直角三角形應(yīng)用(二)復(fù)習(xí)目標(biāo):系及解直角三角形的方法;相關(guān)的應(yīng)用性問(wèn)題;合題.知識(shí)要點(diǎn):?.、平行四邊形的面積計(jì)算公式?.檢測(cè)練習(xí):,AB是⊙O的直徑,BC是⊙O的一條弦,且BC:AB=4:5,D是CAB上的一點(diǎn),求cos
2024-11-19 12:02
【摘要】第二節(jié)解直角三角形及其應(yīng)用考點(diǎn)一解直角三角形的應(yīng)用例1(2022·湖南岳陽(yáng)中考)圖1是某小區(qū)入口實(shí)景圖,圖2是該入口抽象成的平面示意圖.已知入口BC寬,門衛(wèi)室外墻AB上的O點(diǎn)處裝有一盞路燈,點(diǎn)O與地面BC的距離為,燈臂OM長(zhǎng)為(燈罩長(zhǎng)度忽略不計(jì)),∠AOM=60°.(1)求點(diǎn)M到地面的距離;
2025-06-17 19:54
2025-06-17 19:45
【摘要】教材同步復(fù)習(xí)第一部分第四章三角形第15講一般三角形及其性質(zhì)知識(shí)要點(diǎn)·歸納?1.概念:由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形.?2.分類知識(shí)點(diǎn)一三角形的概念及其分類(1)按角分?????????直角三角形?有一
2025-06-12 12:15
【摘要】《中考新導(dǎo)向初中總復(fù)習(xí)(數(shù)學(xué))》配套課件第四章三角形第20課解直角三角形的實(shí)際應(yīng)用1.如圖1,視線在水平線上方的角叫做________,視線在水平線下方的角叫________.一、考點(diǎn)知識(shí),2.以觀測(cè)者的位置為中心,將正北或正南方向作為起始方向旋轉(zhuǎn)到目標(biāo)的方向線所成的角
2025-06-20 19:54
【摘要】第六節(jié)解直角三角形及其應(yīng)用考點(diǎn)一銳角三角函數(shù)(5年0考)例1(2022·德州中考)如圖,在4×4的正方形方格圖形中,小正方形的頂點(diǎn)稱為格點(diǎn),△ABC的頂點(diǎn)都在格點(diǎn)上,則∠BAC的正弦值是.【分析】先根據(jù)勾股定理的逆定理判斷出△ABC的形狀,再由銳角三角函數(shù)的定義即可
2025-06-12 13:09
【摘要】第17講等腰三角形與等邊三角形1.(10分)(2022濱州)如圖K1-17-1,在△ABC中,AB=AC,D為BC上一點(diǎn),且DA=DC,BD=BA,則∠B的大小為()A.40°B.36°C.30°D.25°2.(10分)如圖K1-17-2,
2025-06-19 12:56
【摘要】第17講等腰三角形與等邊三角形知識(shí)梳理1.等腰三角形的性質(zhì):(1)等腰三角形是軸對(duì)稱圖形,對(duì)稱軸是頂角平分線所在的________________.(2)等腰三角形底邊上的高、中線及頂角平分線重合(簡(jiǎn)稱“________________”).(3)等腰三角形的兩底角相等(簡(jiǎn)稱“______________”).
2025-06-21 12:25
【摘要】第一部分考點(diǎn)研究第四章三角形第五節(jié)解直角三角形及其實(shí)際應(yīng)用解直角三角形銳角三角函數(shù)定義:如圖①,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的對(duì)邊分別為a、b、c,正弦sinA=;余弦cosA=
2025-06-06 12:10
2025-06-12 20:51