【摘要】第五章定積分定積分的概念與性質(zhì)微積分基本公式定積分的計(jì)算反常積分定積分的幾何應(yīng)用第一節(jié)定積分的概念與性質(zhì)三、定積分的幾何意義一、定積分引入兩個(gè)實(shí)際問(wèn)題二、定積分的定義四、定積分的性質(zhì)abxyo?S?曲邊梯形由連續(xù)曲線實(shí)例1
2025-01-19 15:10
【摘要】2由牛頓——萊布尼茲公式,可以通過(guò)不定積分來(lái)計(jì)算定積分.一般是將定積分的計(jì)算截然分成兩步:先計(jì)算相應(yīng)的不定積分,然后再運(yùn)用牛頓——萊布尼茲公式代值計(jì)算出定積分.這種作法相當(dāng)麻煩,我們希望將不定積分的計(jì)算方法與牛頓——萊布尼茲公式有機(jī)地結(jié)合起來(lái),構(gòu)成定積分自身的計(jì)算方法——定積分的換元法和定積
2025-01-19 14:34
【摘要】一、問(wèn)題的提出二、二重積分的概念三、二重積分的性質(zhì)四、小結(jié)思考題第一節(jié)二重積分的概念與性質(zhì)柱體(cylindricalbody)體積=底面積×高特點(diǎn):平頂.曲頂柱體體積=?特點(diǎn):曲頂(curvedvertexsurface).),(yxfz?D1.曲頂柱體的體積
2025-08-21 12:46
【摘要】§學(xué)習(xí)目標(biāo)1.理解曲邊梯形面積的求解思想,掌握其方法步驟;2.了解定積分的定義、性質(zhì)及函數(shù)在上可積的充分條件;3.明確定積分的幾何意義和物理意義;4.無(wú)限細(xì)分和無(wú)窮累積的思維方法.復(fù)習(xí)1:函數(shù)的導(dǎo)數(shù)是復(fù)習(xí)2:若函數(shù)的增區(qū)間是,則的取值范圍是一、新課導(dǎo)學(xué)問(wèn)題:下圖的陰影部分
2025-08-17 04:48
【摘要】備考基礎(chǔ)·查清熱點(diǎn)命題·悟通遷移應(yīng)用·練透課堂練通考點(diǎn)課下提升考能首頁(yè)上一頁(yè)下一頁(yè)末頁(yè)結(jié)束數(shù)學(xué)第十二節(jié)定積分與微積分基本定理1.定積分的概念第十二節(jié)定積分與微積分基本定理在????abf(x)dx中,
2024-11-23 12:12
【摘要】1積分方法與定積分的應(yīng)用1.複習(xí)不定積分和微分的關(guān)係2.定積分和面積的關(guān)係3.積分法則4.實(shí)際的應(yīng)用21.複習(xí)不定積分和微分的關(guān)係?我們先複習(xí)有關(guān)不定積分(IndefiniteIntegral)的定義。不定積分又稱為反微分(Antiderivative),其定義如下:?定義1:
2025-08-23 09:25
【摘要】定積分的概念問(wèn)題提出動(dòng)的路程,都可以通過(guò)“四步曲”解決,這四個(gè)步驟是什么?其中哪個(gè)步驟是難點(diǎn)?分割→近似代替→求和→取極限.運(yùn)動(dòng)的路程是兩類不同的問(wèn)題,但它們有共同的解決途徑,我們可以此為基點(diǎn),構(gòu)建一個(gè)新的數(shù)學(xué)理論,使得這些問(wèn)題歸結(jié)為某個(gè)數(shù)學(xué)問(wèn)題來(lái)解決,并應(yīng)用于更多的研究領(lǐng)域
2024-11-17 19:50
【摘要】第一節(jié)定積分的概念一、引入定積分概念的實(shí)例二、定積分的概念三、定積分的存在定理四、定積分的基本性質(zhì)一、引入定積分概念的實(shí)例引例1曲邊梯形的面積曲邊梯形設(shè)函數(shù)f(x)在區(qū)間[a,b](ab)上非負(fù)且連續(xù),由曲線y=f(x),直線x=a,x=b及x軸圍成的圖形稱為曲邊梯形,其中曲線弧y=f(x
2025-07-20 15:04
【摘要】abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問(wèn)題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【摘要】2在微分學(xué)中:1)(??????xx211)(arctanxx???反過(guò)來(lái):x???11)(cx??)1ln(x5sec)(2??cx?5tan51復(fù)雜,怎樣求?問(wèn)題:如果右端函數(shù)較?tan2x??)(如3例??xxcossin??sin是
2025-05-15 23:58
【摘要】......第二節(jié)定積分計(jì)算公式和性質(zhì)一、變上限函數(shù)設(shè)函數(shù)在區(qū)間上連續(xù),并且設(shè)x為上的任一點(diǎn),于是,在區(qū)間上的定積分為這里x既是積分上限,又是積分變量,由于定積分與積分變量無(wú)關(guān),故可將此改為如果上限x
2025-06-18 12:58
【摘要】定積分的概念f(x)在區(qū)間[a,b]上連續(xù),用分點(diǎn)將區(qū)間[a,b]等分成n個(gè)小區(qū)間,在每個(gè)小區(qū)間上任取一點(diǎn)ξi(i=1,2,…,n),作和式①_____________,當(dāng)n→∞時(shí),上述和式無(wú)限接近于某個(gè)常數(shù),這個(gè)常數(shù)叫做函數(shù)f(x)在區(qū)間[a,b]上的②________,記作
2024-11-18 12:13
【摘要】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-19 21:34
【摘要】不定積分的概念與性質(zhì)不定積分的換元積分法不定積分的分部積分法積分表的用法第4章不定積分結(jié)束前頁(yè)結(jié)束后頁(yè)又如d(secx)=secxtanxdx,所以secx是secxtanx的原函數(shù).定義設(shè)f(x)在某區(qū)間上有定義,如果對(duì)該區(qū)間的任意點(diǎn)x
2025-07-18 00:00
【摘要】第二節(jié)定積分的基本性質(zhì)iniiiniixgxf?????????1010)(lim)(lim=????,即差積分的和的定積分等于它們的定差函數(shù)的和)()(性質(zhì)1.d)(d)(d)]()([??????bababaxxgxxfxxgxfiniiibaxgfxx
2025-07-20 20:48