【摘要】指數(shù)不等式、對(duì)數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對(duì)數(shù)不等式的重要依據(jù)。例5-
2025-06-25 01:24
【摘要】2022年春人教版數(shù)學(xué)七年級(jí)下冊(cè)課件第九章不等式與不等式組不等式的性質(zhì)第2課時(shí)利用不等式的性質(zhì)解不等式第九章不等式與不等式組不等式知識(shí)管理學(xué)習(xí)指南歸類探究當(dāng)堂測(cè)評(píng)分層作業(yè)不等式的性質(zhì)第2課時(shí)利用不等式
2025-06-19 12:14
【摘要】河南省泌陽(yáng)縣職業(yè)教育中心周祥松指數(shù)不等式的解法是利用指數(shù)函數(shù)的性質(zhì)化為同解的代數(shù)不等式);()();()(10);()();()(1)()()()()()()()(xgxfaaxgxfaa時(shí),axgxfaaxgxfaa時(shí),axgxfxgxfxgxf
2025-05-09 00:31
2025-08-15 22:11
【摘要】......基本不等式習(xí)專題之基本不等式做題技巧【基本知識(shí)】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(4)當(dāng)且僅當(dāng)
2025-05-13 23:45
【摘要】第一篇:用均值不等式證明不等式 用均值不等式證明不等式 【摘要】:不等式的證明在競(jìng)賽數(shù)學(xué)中占有重要地位.本文介紹了用均值不等式證明幾個(gè)不等式,我們?cè)谧C明不等式時(shí),常用到均值不等式。要求我們要認(rèn)真分...
2025-10-19 10:42
【摘要】第一篇:不等式與不等式組小結(jié)與解含參數(shù)問(wèn)題題型歸納(定稿) 第九章不等式與不等式知識(shí)點(diǎn)歸納 一、不等式及其解集和不等式的性質(zhì) 用不等號(hào)表示大小關(guān)系的式子叫做不等式。常見不等號(hào)有:“<”“>”“≤...
2025-10-15 19:36
【摘要】不等式與不等組測(cè)試卷班別姓名學(xué)號(hào)總分一、選擇題(每小題5分,共30分)nm?,則下列不等式中成立的是()(A)bnam???(B)nbma?(C)22nama?(D)nama???)5
2025-11-03 02:11
【摘要】高二數(shù)學(xué)競(jìng)賽班二試講義第一講琴生不等式、冪平均不等式一、知識(shí)要點(diǎn):1.琴生不等式凸函數(shù)的定義:設(shè)連續(xù)函數(shù)的定義域?yàn)?,?duì)于區(qū)間內(nèi)任意兩點(diǎn),都有,則稱為上的下凸(凸)函數(shù);反之,若有,則稱為上的上凸(凹)函數(shù)。琴生(Jensen)不等式(1905年提出):若為上的下凸(凸)函數(shù),則(想象邊形的重心在圖象的上方,個(gè)點(diǎn)重合時(shí)“邊形”的重心在圖
2025-08-04 18:32
【摘要】EDOI1七年級(jí)(下)數(shù)學(xué)(不等式與不等式組)一、選擇題(每小題5分,共30分)1.若m>n,則下列不等式中成立的是()A.m+a<n+bB.ma<nbC.ma2>na2D.a(chǎn)?m<a?n2.不等式4(x?2)>2(3x+5)的非負(fù)整數(shù)
2025-11-03 02:15
【摘要】不等式與不等式組(二)1.某次知識(shí)競(jìng)賽共有20道題,每一題答對(duì)得10分,答錯(cuò)或不答都倒扣5分。小明得分低于90分,他最多答對(duì)多少道題?總得分如何計(jì)算?2.小穎家每月水費(fèi)都不少于15元,自來(lái)水公司的收費(fèi)標(biāo)準(zhǔn)如下:若每戶每月用水不超過(guò)5立方米,則每立方米收費(fèi)1.8元;若每戶每月用水超過(guò)5立方米,則超出部分每立方米收費(fèi)
2025-08-05 19:39
【摘要】一元一次不等式與不等式組經(jīng)典講義1、知識(shí)總結(jié)(一)不等式及其性質(zhì)1、不等式:?。?)定義用“<”(或“≤”),“>”(或“≥”)等不等號(hào)表示大小關(guān)系的式子,“≠”表示不等關(guān)系的式子也是不等式.?。?)不等式的解:能使不等式成立的未知數(shù)的值,叫做不等式的解?!。?)不等式的解集:一般地,一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。求不等式的解集的過(guò)程叫做解不等式
2025-04-16 12:45
【摘要】不等關(guān)系與不等式(第一課時(shí))一、教學(xué)任務(wù)分析1、感受不等關(guān)系的普遍存在通過(guò)一系列的具體情境,使學(xué)生感受到在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系。2、利用不等式(組)表示實(shí)際問(wèn)題中的不等關(guān)系通過(guò)具體問(wèn)題情境,讓學(xué)生學(xué)習(xí)如何利用不等式(組)研究及表示不等關(guān)系,進(jìn)一步理解不等式(組)刻畫不等關(guān)系的意義和價(jià)值。3、初步掌握運(yùn)用作差比較法比較實(shí)數(shù)和代數(shù)式的大小。二、教學(xué)重
2025-04-16 12:51
【摘要】第一篇:不等式教學(xué)設(shè)計(jì) §不等式教學(xué)設(shè)計(jì)教材分析: 本節(jié)內(nèi)容主要有:不等式及其解集、不等式的性質(zhì)。教材首先以實(shí)際問(wèn)題為例,結(jié)合問(wèn)題中的不等關(guān)系,引出不等式及其解集的概念;然后類比一元一次方程,,教...
2025-11-06 23:40
【摘要】課時(shí)作業(yè)76 柯西不等式與排序不等式、數(shù)學(xué)歸納法證明不等式時(shí)間:45分鐘 分值:100分一、填空題(每小題5分,共45分)1.已知實(shí)數(shù)x、y、z滿足x+2y+3z=1,則x2+y2+z2的最小值為________.解析:由(x2+y2+z2)(12+22+32)≥(x+2y+3z)2=1可得,x2+y2+z2≥.答案:2.(2010·廣東東莞)若x+2
2025-08-18 17:02