【摘要】不等式與不等式組教材分析本章的主要內容包括:一元一次不等式(組)及其相關概念,不等式的性質,一元一次不等式(組)的解法及其解集的幾何表示,利用一元一次不等式(組)分析與解決實際問題.其中,以不等式(組)為工具分析問題、解決問題是重點,也是教學中的主要難點;一元一次不等式(組)及其相關概念、不等式的性質是基礎知識;掌握一元一次不等式(組)的解法及解集
2025-07-18 00:29
【摘要】不等式與不等式組綜合檢測題一、選擇題1,若-a>a,則a必為()2,已知a<0,-1<b<0,則a,ab,ab2之間的大小關系是()>ab>ab2>ab2>a>a>ab2D.ab<a<ab23,(
2025-11-03 02:11
【摘要】含參不等式專題(淮陽中學)編寫:孫宜俊當在一個不等式中含有了字母,則稱這一不等式為含參數的不等式,那么此時的參數可以從以下兩個方面來影響不等式的求解,首先是對不等式的類型(即是那一種不等式)的影響,其次是字母對這個不等式的解的大小的影響。我們必須通過分類討論才可解決上述兩個問題,同時還要注意是參數的選取確定了不等式
2025-07-26 06:19
【摘要】-不等式的性質及一元二次不等式的解法一、不等關系與不等式1、不等式的定義:用不等號(“≤”,“≥”,“<”,“>”,“≠”)表示不等關系的式子。用“<”,“>”連接的不等式叫嚴格不等式,用“≤”,“≥”連接的不等式叫非嚴格不等式。2、實數的特征和實數大小的比較(1)、特征:(1)任意實數的平方不小于0:即:∈R,則2≥0;(2)任意兩個實數都可以比較大小。3、實數比較
2025-04-16 12:51
【摘要】不等式與不等式典型例題例320xxm??????有解,則m的取值范圍是:。010axx???????無解,則a的取值范圍是:。例202350xabxab?????????的解集為-1x&
2025-07-23 23:04
【摘要】第二十講不等式與不等式組,并把解在數軸上表示出來.61232???xx1325??x<⑴⑵3x+5>5(x-1)356634xx???①②3x-m≤0的正整數解是1,2,3,求m的取值范圍.x的不等式組x-a≥
2025-11-10 12:04
【摘要】1一元二次不等式解法【知識要點】)0(42????aacb0??0??0??0)(?xf的解集??21xxxxx??或????????abxx2R0)(?xf的解集??21xxxx????)(
2025-01-07 16:45
【摘要】精品資源不等式與不等式組復習課一、不等式及一元一次不等式概念判斷下列不等式哪些是一元一次不等式,哪些不是?1、2、3、4、5、二、不等式的性質(用符號語言來表示)1、若①②③④2、若三、解下列一元一次不等式并將解集在數軸上表示。①
【摘要】高二數學競賽班二試講義第一講琴生不等式、冪平均不等式一、知識要點:1.琴生不等式凸函數的定義:設連續(xù)函數的定義域為,對于區(qū)間內任意兩點,都有,則稱為上的下凸(凸)函數;反之,若有,則稱為上的上凸(凹)函數。琴生(Jensen)不等式(1905年提出):若為上的下凸(凸)函數,則(想象邊形的重心在圖象的上方,個點重合時“邊形”的重心在圖
2025-08-04 18:32
【摘要】第三講絕對值不等式的解法【基本知識】(1)含絕對值的不等式|x|<a與|x|>a的解集不等式a>0a=0a<0|x|<a{x|-a<x<a}|x|>a{x|x>a或x<-a}{x|x∈R且x≠0}R注:|x|以及|x-a|±|x-b|表示的幾何意義(|x|表示數軸上的點x到原點的距離;|x-a|±|x-b
2025-08-18 16:51
【摘要】. 一元二次不等式一、知識導學1.一元一次不等式與一次函數的關系對于不等式axb,(1)當a0時,解為___________;(2)當a<0時,解為____________(3)當a=0,b≥0時___________;當a=0,b<0時,解為_______________.①作出的圖像,觀察>0,=0,<0的解與圖像的關系>0的解集
2025-08-05 04:16
【摘要】精品資源不等式與不等式組單元測試班級姓名座號成績一、選擇題(每小題5分,共30分)1、若mn,則下列不等式中成立的是()A、m+ana2D、a-ma-n2、不等式的負整數解的個數為()A、0個
2025-03-24 05:47
【摘要】精品資源不等式與不等式組(時間:45分鐘滿分:100分)姓名歡迎下載一、選擇題(每小題5分,共30分)1.若m>n,則下列不等式中成立的是()A.m+a<n+bB.ma<nbC.ma2>na2D.am<an2.不等式4(x2)>2(3x+5)的非負整數解的個
2025-06-29 17:09
【摘要】第一篇:57均值不等式與不等式的實際應用 學案五十七:均值不等式與不等式的實際應用 命題:閆桂女劉麗娟審核:【考綱要求】 1、了解均值不等式的證明過程 2、會用均值不等式解決簡單的最大(?。┲?..
2025-10-25 14:01
【摘要】不等式解法舉例(1)含絕對值的一元一次、一元二次不等式(組)的解法基本絕對值不等式的解集?不等式︱x︱0)的解集是{x︱-aa(a0)的解集是{x︱xa或x-a}.?嘗試:(1)︱x︱1
2025-10-08 03:43