【摘要】第三章綜合測試(B)(時間:120分鐘滿分:150分)一、選擇題(本大題共12個小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.設集合P={3,log2a},Q={a,b},若P∩Q={0},則P∪Q等于()A.{3,0}B.{3,0,1}C.{3,
2024-11-28 01:16
【摘要】學習目標3.用向量證明平面幾何、解析幾何問題的步驟。4.體會向量在解決問題中的應用,培養(yǎng)運算及解決問題的能力。學習過程一、課前準備(預習教材117頁~122頁,找出疑惑之處)二、新課導學用例,已知平行四邊形ABCD、E、E在對角線BD上,并且=BEFD.求證:AECF是平行四邊形
2024-11-19 06:26
【摘要】(6)正弦型函數(shù)y=Asin(ωx+φ)的性質(zhì)(課前預習案)班級:___姓名:________編寫:一、新知導學1.y=sinx所有點的縱坐標___________(當A1時)或__________(當0A1)到原來的A倍(橫坐標不變)而得到的函數(shù)ARxxAy(,sin??
2024-11-18 16:45
【摘要】第三章函數(shù)的應用(Ⅱ)一、選擇題1.某工廠第三年的產(chǎn)量比第一年的產(chǎn)量增長44%,若每年的平均增長率相同(設為x),則下列結論中正確的是()A.x22%B.x22%C.x=22%D.x的大小由第一年產(chǎn)量確定[答案]B[解析]由題意設第一年產(chǎn)量為a,則第三年產(chǎn)量為a(1+44%
2024-11-27 23:55
【摘要】第二章一、選擇題1.向量(AB→+MB→)+(BO→+BC→)+OM→等于()A.BC→B.AB→C.AC→D.AM→[答案]C[解析]原式=AB→+BC→+MB→+BO→+OM→=AC→+0=AC→.2.若a、b為非零向量,則下列
2024-11-28 01:12
【摘要】2.1.4數(shù)乘向量一.學習要點:數(shù)乘向量、向量共線和三點共線的判斷。二.學習過程:一、復習引入:1、向量的加法:2、向量的減法:二、講解新課:1、實數(shù)與向量的積引例1:已知非零向量a,作出aaa??和)()(aa???。探究:相同向量相加后,和的長度與方向有什么變化?定義:實數(shù)λ與向量a的積是
2024-11-27 23:46
【摘要】第二章一、選擇題1.下列等式:①0-a=-a;②-(-a)=a;③a+(-a)=0;④a+0=a;⑤a-b=a+(-b);⑥a+(-a)=()A.3B.4C.5D.6[答案]C[解析]①、②、④、⑤、⑥正確,③不正確,故
【摘要】第一章集合的概念一、選擇題1.若a是R中的元素,但不是Q中的元素,則a可以是()A.B.-5C.37D.7[答案]D[解析]∵7是實數(shù),但不是有理數(shù),∴選D.2.集合A中的元素為全部小于1的數(shù),則有()A.3∈AB.1∈AC.0∈A
2024-11-28 00:02
【摘要】第二章一、選擇題1.已知點A(7,1)、B(1,4),直線y=12ax與線段AB交于點C,且AC→=2CB→,則a等于()A.2B.1C.45D.53[答案]A[解析]設C(x,y),則(x-7,y-1)=(2-2x,8-2y),∴????
2024-11-27 23:40
【摘要】2.1.1向量的概念一.學習要點:向量的有關概念二.學習過程:一、復習:在現(xiàn)實生活中,我們會遇到很多量,其中一些量在取定單位后用一個實數(shù)就可以表示出來,如長度、質(zhì)量等.還有一些量,如我們在物理中所學習的位移,是一個既有大小又有方向的量,這種量就是我們本章所要研究的向量.二、新課學習::
2024-11-27 23:47
【摘要】2.1.3向量的減法一.學習要點:向量的減法二.學習過程:一、復習:向量加法的法則:二、新課學習:1.用“相反向量”定義向量的減法(1)“相反向量”的定義:(2)規(guī)定:零向量的相反向量仍是零向量.?(?a)
【摘要】第二章一、選擇題1.把平面上一切單位向量平移到共同始點,那么這些向量的終點構成的圖形是()A.一條線段B.一段圓弧C.兩個孤立的點D.一個圓[答案]D[解析]圖形是一個以始點為圓心,以1為半徑的圓.2.把所有相等的向量平移到同一起點后,這些向量的終點將落在(
【摘要】三視圖自主學習學習目標了解正投影的概念,理解三視圖的原理和視圖間的相互關系,能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡單組合)的三視圖,會畫某些建筑物或零件的直觀圖和三視圖,能識別三視圖所表示的立體模型,并會使用材料(比如紙板)制作模型.自學導引1.正投影在物體的平行投影中,如果投射線與投射面垂直,則稱
2024-11-18 16:47
【摘要】3.2.1倍角公式一。學習要點:二倍角公式及其簡單應用。二。學習過程:復習:和角公式.新課學習:sin2??cos2??tan2??升冪公式:降冪公式:例1、已知5sin2
2024-11-18 16:43
【摘要】數(shù)列雙基達標限時20分鐘1.下列幾個結論:①數(shù)列若用圖象表示,從圖象上看是一群孤立的點;②數(shù)列的通項公式一定存在;③數(shù)列的通項公式的表示式是唯一的;④數(shù)列1,2,3和數(shù)列1,2,3,…是同一數(shù)列;⑤數(shù)列a,b,c與數(shù)列c,b,a一定不是同一數(shù)列.其中正確的是().A.①②④B.①
2024-11-27 23:54