【摘要】2.1.5向量共線條件與軸上向量坐標(biāo)運(yùn)算一、學(xué)習(xí)要點(diǎn):?jiǎn)挝幌蛄俊⑤S上向量坐標(biāo)運(yùn)算、共線定理應(yīng)用二、學(xué)習(xí)過(guò)程:(一)復(fù)習(xí)引入:1.向量的表示方法2.向量的加法,減法及運(yùn)算律3.實(shí)數(shù)與向量的乘法(向量數(shù)乘)4.向量共線定理(二)講解新課:1.單位向量給定一個(gè)非零向量a,與a同方向且長(zhǎng)度等于的單位向量叫
2024-11-18 16:44
【摘要】課題坐標(biāo)的標(biāo)示及運(yùn)算教學(xué)目標(biāo)知識(shí)與技能了解平面向量的正交分解,掌握向量的坐標(biāo)表示.過(guò)程與方法掌握兩個(gè)向量和、差及數(shù)乘向量的坐標(biāo)運(yùn)算法則.情感態(tài)度價(jià)值觀正確理解向量坐標(biāo)的概念,要把點(diǎn)的坐標(biāo)與向量的坐標(biāo)區(qū)分開(kāi)來(lái).重點(diǎn)溝通向量“數(shù)”與“形”的特征,使向
2024-11-19 17:32
【摘要】一、選擇題1.(2021·重慶高一檢測(cè))已知α=67π,則α的終邊在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限【解析】α=67π∈(π2,π),∴α的終邊在第二象限.【答案】B2.時(shí)鐘的分針在1點(diǎn)到3點(diǎn)20分這段時(shí)間里轉(zhuǎn)過(guò)的弧度數(shù)為()
2024-11-27 23:51
【摘要】撰稿教師:李麗麗學(xué)習(xí)目標(biāo),會(huì)進(jìn)行平面向量數(shù)量積的坐標(biāo)運(yùn)算。。學(xué)習(xí)過(guò)程一、課前準(zhǔn)備(預(yù)習(xí)教材112頁(yè)~114頁(yè),找出疑惑之處)二、新課導(dǎo)學(xué)1.向量?jī)?nèi)積的坐標(biāo)運(yùn)算已知兩個(gè)非零向量????1122a=x,y,b=x,y,ab=?(坐標(biāo)形式)。:
【摘要】撰稿教師:李麗麗自學(xué)目標(biāo)1.理解向量的概念,掌握向量的二要素(長(zhǎng)度、方向);2.能正確地表示向量,初步學(xué)會(huì)求向量的模長(zhǎng);3.注意向量的特點(diǎn):可以平行移動(dòng)學(xué)習(xí)重、難點(diǎn):1.向量、相等向量、共線向量的概念;2.向量的幾何表示學(xué)習(xí)過(guò)程一、課前準(zhǔn)備(預(yù)習(xí)教材77頁(yè)~79頁(yè),找出疑惑之處)二、新課導(dǎo)學(xué)(一)問(wèn)題探
2024-11-27 23:47
【摘要】§向量的加法(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫(xiě):一、新知導(dǎo)學(xué)a,b在平面上任取一點(diǎn)A,作AB=,BC=,再作向量AC,則向量叫做a與b的和(或),記作,即a+b=AB+B
2024-11-27 23:46
【摘要】學(xué)習(xí)目標(biāo)1、掌握向量的加法運(yùn)算,并理解其幾何意義;2、會(huì)用向量加法的三角形法則和平行四邊形法則作兩個(gè)向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問(wèn)題的能力;一、※課前準(zhǔn)備(預(yù)習(xí)教材80頁(yè)~83頁(yè),找出疑惑之處)二、※新課導(dǎo)學(xué):1,回答以下問(wèn)題(1)某
【摘要】§向量的概念(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫(xiě):一、新知導(dǎo)學(xué)1、我們把具有____和_____的量稱為向量。2、具有線段叫做,以A為始點(diǎn),B為終點(diǎn)的有向線段記作_____,其長(zhǎng)度(或模)記為__,長(zhǎng)度為零的向量叫做_____,記作__,長(zhǎng)度為1的向量叫做______3、向量可
【摘要】平面向量的坐標(biāo)表示與運(yùn)算OxyijaA(x,y)a1.以原點(diǎn)O為起點(diǎn)作,點(diǎn)A的位置由誰(shuí)確定?aOA?由a唯一確定2.點(diǎn)A的坐標(biāo)與向量a的坐標(biāo)的關(guān)系??jī)烧呦嗤蛄縜坐標(biāo)(x,y)一一對(duì)應(yīng)復(fù)習(xí)回顧已知
2024-11-18 12:09
【摘要】 《平面向量正交分解及坐標(biāo)表示》導(dǎo)學(xué)案 【學(xué)習(xí)目標(biāo)】 (1)理解平面向量的坐標(biāo)的概念; (2)掌握平面向量的坐標(biāo)運(yùn)算; (3)會(huì)根據(jù)向量的坐標(biāo),判斷向量是否共線. 【重點(diǎn)難點(diǎn)】 教學(xué)重點(diǎn)...
2025-04-03 01:19
【摘要】平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運(yùn)算1.下列說(shuō)法正確的有()①向量的坐標(biāo)即此向量終點(diǎn)的坐標(biāo).②位置不同的向量其坐標(biāo)可能相同.③一個(gè)向量的坐標(biāo)等于它的終點(diǎn)坐標(biāo)減去它的始點(diǎn)坐標(biāo).④相等的向量坐標(biāo)一定相同.A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)解析:向量的坐標(biāo)是其終點(diǎn)坐標(biāo)減去起點(diǎn)對(duì)
【摘要】平面向量的坐標(biāo)運(yùn)算學(xué)習(xí)目標(biāo):1.了解平面向量的正交分解,掌握向量的坐標(biāo)表示.2.掌握兩個(gè)向量和、差及數(shù)乘向量的坐標(biāo)運(yùn)算法則.3.正確理解向量坐標(biāo)的概念,要把點(diǎn)的坐標(biāo)與向量的坐標(biāo)區(qū)分開(kāi)來(lái).【學(xué)法指導(dǎo)】1.向量的正交分解是把一個(gè)向量分解為兩個(gè)互相垂直的向量,是向量坐標(biāo)表示的理論依據(jù).向量的坐標(biāo)表示
2024-11-19 17:41
【摘要】§3.空間向量的正交分解及其坐標(biāo)表示知識(shí)點(diǎn)一向量基底的判斷已知向量{a,b,c}是空間的一個(gè)基底,那么向量a+b,a-b,c能構(gòu)成空間的一個(gè)基底嗎?為什么?解∵a+b,a-b,c不共面,能構(gòu)成空間一個(gè)基底.假設(shè)a+b,a-b,c共面,則存在x,
2024-12-08 01:49
【摘要】向量共線的條件和軸上向量的坐標(biāo)運(yùn)算一般地,實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘運(yùn)算,記作λa,它的長(zhǎng)度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當(dāng)λ0時(shí),λa的方向與a方向相同;當(dāng)λ0時(shí),λa的方向與a方向相反;特別地,當(dāng)
2024-11-18 12:10
【摘要】平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運(yùn)算考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難平面向量的坐標(biāo)表示1、2、46平面向量的坐標(biāo)運(yùn)算3、57、8綜合問(wèn)題9、10111.若O(0,0),A(1,2),且OA′→=2OA→,則A′點(diǎn)坐標(biāo)為()A.(1,4)