【摘要】兩角和與差的余弦學(xué)習(xí)目標(biāo):,能從兩角差的余弦公式導(dǎo)出兩角和的余弦公式,并會利用公式進(jìn)行三角函數(shù)式的化簡和求值。,再利用公式和化簡時,注意公式的靈活運(yùn)用。自學(xué)指導(dǎo):?????????????????????)cos(??_______________________)cos(????自
2024-11-27 23:35
【摘要】§兩角和與差的正切(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1.??tan????,??tan????。注意:1?必須在定義域范圍內(nèi)使用上述公式,tan?,tan?,tan(?
2024-11-18 16:43
【摘要】1.2.1任意角的三角函數(shù)(1)一.學(xué)習(xí)要點(diǎn):三角函數(shù)的定義、符號分布、誘導(dǎo)公式二.學(xué)習(xí)過程:(一)復(fù)習(xí):初中銳角的三角函數(shù)是如何定義的?(二)新課學(xué)習(xí):1.三角函數(shù)定義在直角坐標(biāo)系中,設(shè)?是一個任意角,?終邊上任意一點(diǎn)P(除了原點(diǎn))的坐標(biāo)為(,)xy,它與原點(diǎn)的距離為2222(||||0
2024-11-19 06:26
【摘要】1.2.1任意角的三角函數(shù)(2)一.學(xué)習(xí)要點(diǎn):單位圓中的三角函數(shù)線及其簡單應(yīng)用二.學(xué)習(xí)過程:(一)復(fù)習(xí):1.三角函數(shù)的定義及定義域、值域:2.三角函數(shù)的符號分布:3.誘導(dǎo)公式:(二)新課學(xué)習(xí):1.單位圓:圓心在圓點(diǎn)O,半徑等于單位長的圓叫做單位圓.2.有向線段:坐標(biāo)軸是規(guī)定了方向的直線,那么與之平行的線段
2024-11-18 16:46
【摘要】一、選擇題1.sin600°+tan(-300°)的值是()A.-32B.32C.-12+3+3【解析】原式=sin(360°+240°)+tan(-360°+60°)=sin240°+tan60°
2024-11-27 23:50
【摘要】第一章一、選擇題1.已知α(0α2π)的正弦線和余弦線長度相等,且符號相同,那么α的值為()A.3π4或π4B.5π4或7π4C.π4或5π4D.π4或7π4[答案]C[解析]作出角π4與5π4的正弦線、余弦如圖所示.由圖可知,角π4與5
2024-11-27 23:51
【摘要】一、選擇題1.已知函數(shù)y=cosx(x∈R),下面結(jié)論錯誤的個數(shù)是()①函數(shù)f(x)的最小正周期為2π;②函數(shù)f(x)在區(qū)間[0,π2]上是增函數(shù);③函數(shù)f(x)的圖象關(guān)于直線x=0對稱;④函數(shù)f(x)是奇函數(shù).A.0B.1C.2D.3【解析】余弦函數(shù)的最小正周期是
2024-11-27 23:47
【摘要】一、選擇題1.函數(shù)y=sin(-x),x∈[0,2π]的簡圖是()【解析】∵y=sin(-x)=-sinx,由五點(diǎn)法知應(yīng)選B.【答案】B2.函數(shù)y=2sinx-3的定義域是()A.[π6,5π6]B.[π6+2kπ,5π6+2kπ](k∈Z)C.[π3,2π3]
【摘要】a·b=|a||b|cosθ向量數(shù)量積的定義是?向量與自身的內(nèi)積為?兩個單位向量的數(shù)量積等于?向量長度的平方它們之間夾角的余弦函數(shù)值思考?yxoP1βP2α在直角坐標(biāo)系中,以原點(diǎn)為中心,單位長度為半徑作單位圓,以原點(diǎn)為頂點(diǎn),x軸為始邊分別作角任意α,β與單位圓交于
2024-11-17 15:05
【摘要】雙基達(dá)標(biāo)?限時20分鐘?1.計算sin(-1380°)的值為().A.-12C.-32D.32解析sin(1380°)=sin[60°+(-4)×360°]=sin60°=32.答案
【摘要】積化和差記憶口訣:積化和差得和差,余弦在后要相加;異名函數(shù)取正弦,正弦相乘取負(fù)號。和差化積記憶口訣:正加正,正在前;正減正,余在前;余加余,余并肩;余減余,負(fù)正弦。1.下列等式錯誤的是( )A.sin(A+B)+sin(A-B)=2sinAcosBB.sin(A+B)-sin(A-B)=2cosAsi
2025-03-25 06:40
【摘要】二倍角的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1、以兩角和正弦、余弦和正切公式為基礎(chǔ),推導(dǎo)二倍角正弦、余弦和正切公式2、二倍公式角的理解及其靈活運(yùn)用回憶兩角和的正弦、余弦、正切公式??????sinsincoscos)cos(?????????sincoscossin)sin(
2024-11-18 08:49
【摘要】已知三角函數(shù)值求角(二)一.學(xué)習(xí)要點(diǎn):已知三角函數(shù)值求角二.學(xué)習(xí)過程:一、復(fù)習(xí):1.反正弦,反余弦函數(shù)的意義:2.已知三角函數(shù)求角:二、講解新課:反正切函數(shù)三、講解范例:例1(1)已知?????????2,231tan??xx且,求x
【摘要】雙基達(dá)標(biāo)?限時20分鐘?1.計算cos80°cos20°+sin80°·sin20°的值為().A.22B.32D.-22答案C2.設(shè)α∈??????0,π2,若sinα=35,則2cos
2024-11-28 01:12
【摘要】已知三角函數(shù)值求角(一)一.學(xué)習(xí)要點(diǎn):已知三角函數(shù)值求角二.學(xué)習(xí)過程:復(fù)習(xí)引入:復(fù)習(xí)誘導(dǎo)公式一到誘導(dǎo)公式五二、講解新課:簡單理解反正弦,反余弦函數(shù)的意義:由Rxxy??,sin1?在R上無反函數(shù)2?在???????2,2??上,,sinxy?x與y是一一對應(yīng)的,且區(qū)間??
2024-11-18 16:44