freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

北師大版高考數(shù)學(xué)一輪總復(fù)習(xí)44《函數(shù)y=asin(ωx+φ)的圖像及三角函數(shù)模型的簡單應(yīng)用》-全文預(yù)覽

2024-12-16 18:06 上一頁面

下一頁面
  

【正文】 ) + b ( ω 0 , |φ |π2) 的圖像的一部分如圖所示: ( 1) 求 f ( x ) 的表達(dá)式; ( 2) 試寫出 f ( x ) 的對稱軸方程. [ 思路分析 ] ( 1) 函數(shù)的最大值為 3 ,最小值為- 1 ,周期 T= π ,從而 A , b , ω 可求,再代入 (π6, 3) ,可求 φ 值. ( 2) 根據(jù) y = sin x 的對稱軸方程得到所求的對稱軸方程. [ 規(guī)范解答 ] ( 1) 由圖像可知,函數(shù)的最大值 M = 3 ,最小值 m =- 1 , 則 A =3 - ? - 1 ?2= 2 , b =3 - 12= 1. 又 T = 2(23π -π6) = π , ∴ ω =2πT=2ππ= 2 , ∴ f ( x ) = 2sin(2 x + φ ) + 1. 將 x =π6, y = 3 代入上式,得 sin(π3+ φ ) = 1 , ∴π3+ φ =π2+ 2 k π , k ∈ Z , 即 φ =π6+ 2 k π , k ∈ Z , 又 ∵ |φ |π2, ∴ φ =π6, ∴ f ( x ) = 2sin(2 x +π6) + 1. ( 2) 由 2 x +π6=π2+ k π( k ∈ Z ) 得 x =π6+12k π , k ∈ Z , ∴ f ( x ) = 2sin(2 x +π6) + 1 的對稱軸方程為: x =π6+12k π , k ∈ Z . [ 方法總結(jié) ] 在確定 φ 值時,也可用五點法確定,往往以尋找 “ 五點法 ” 中的第一零點 ( -φω, 0) 作為突破口.具體如下: “ 第一點 ” ( 即圖像上升時與 x 軸的交點 ) 為 ωx + φ = 0 ;“ 第二點 ” ( 即圖像的 “ 峰點 ” ) 為 ωx + φ =π2; “ 第三點 ” ( 即圖像下降時與 x 軸的交點 ) 為 ωx + φ = π ; “ 第四點 ” ( 即圖像的 “ 谷點 ” ) 為 ωx + φ =3π2; “ 第五點 ” 為 ωx + φ = 2π . ( 文 ) ( 2020 南京模擬 ) 已知函數(shù) y = A sin( ωx + φ )( A 0 , ω 0) 的圖像過點 P (π12, 0) ,圖像上與點 P 最近的一個最高點是 Q (π3,5) . ( 1) 求函數(shù)的解析式; ( 2) 求函數(shù) f ( x ) 的遞增區(qū)間. [ 解析 ] ( 1) 依題意得: A = 5 ,周期 T = 4(π3-π12) = π , ∴ ω=2ππ= 2. 故 y = 5sin(2 x + φ ) ,又圖像過點 P (π12, 0) , ∴ 5sin(π6+ φ ) = 0 , 由已知可得π6+ φ = 0 , ∴ φ =-π6, ∴ y = 5sin(2 x -π6) . ( 2) 由-π2+ 2 k π ≤ 2 x -π6≤π2+ 2 k π , k ∈ Z ,得: -π6+ k π ≤ x ≤π3+ k π , k ∈ Z , 故函數(shù) f ( x ) 的遞增區(qū)間為: [ k π -π6, k π +π3]( k ∈ Z ). 三角函數(shù)的實際應(yīng)用題 已知某海濱浴場海浪的高度 y (m) 是時間t (0 ≤ t ≤ 24 ,單位: h) 的函數(shù),記作: y = f ( t ) ,下表是某日各時的浪高數(shù)據(jù): t ( 時 ) 0 3 6 9 12 15 18 21 24 y (m) 經(jīng)長期觀測, y = f ( t ) 的曲線可近似地看成是函數(shù) y = A c os ωt + b . ( 1) 根據(jù)以上數(shù)據(jù),求函數(shù) y = A c os ωt + b 的最小正周期 T ,振幅 A 及函數(shù)表達(dá)式; ( 2) 依據(jù)規(guī)定,當(dāng)海浪高度高于 1m 時才對沖浪愛好者開放,請依據(jù) ( 1) 的結(jié) 論,判斷一天內(nèi)的 至 之間,有多少時間可供沖浪者進(jìn)行運動? [ 思路分析 ] 由表中數(shù)據(jù)依次求出 b , A , ω 得解析式,再由圖像及函數(shù)的單調(diào)性可求得第 ( 2) 問. [ 規(guī)范解答 ] ( 1) 由表中數(shù)據(jù)知周期 T = 12 , ∴ ω =2πT=2π12=π6. 由 t= 0 , y = 得 A + b = , ① 由 t= 3 , y = 得 b = . ② ∴ A = , b = 1. ∴ 振幅為1
點擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1