【摘要】第一篇:高中數(shù)學(xué)選修2-2知識(shí)點(diǎn)總結(jié) 導(dǎo)數(shù)及其應(yīng)用 一.導(dǎo)數(shù)概念的引入 數(shù)學(xué)選修2-2知識(shí)點(diǎn)總結(jié) :瞬時(shí)速率。一般的,函數(shù)y=f(x)在x=x0處的瞬時(shí)變化率是 limf(x0+Dx)-f(...
2025-10-20 09:33
【摘要】實(shí)數(shù)集的一些性質(zhì)和特點(diǎn):(1)實(shí)數(shù)可以判定相等或不相等;(2)不相等的實(shí)數(shù)可以比較大小;(3)實(shí)數(shù)可以用數(shù)軸上的點(diǎn)表示;(4)實(shí)數(shù)可以進(jìn)行四則運(yùn)算;(5)負(fù)實(shí)數(shù)不能進(jìn)行開偶次方根運(yùn)算;……(1)實(shí)數(shù)集原有的有關(guān)性質(zhì)和特點(diǎn)能否推廣到復(fù)數(shù)集?(2)從復(fù)數(shù)的特點(diǎn)出發(fā),尋找復(fù)數(shù)集新的(實(shí)數(shù)集
2024-11-17 17:10
【摘要】為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)'??e)e)(5(x'x?x1(6)(lnx)'
2024-11-18 08:46
【摘要】第一章 導(dǎo)數(shù)及其應(yīng)用§教學(xué)目標(biāo):1.理解平均變化率的概念;2.了解平均變化率的幾何意義;3.會(huì)求函數(shù)在某點(diǎn)處附近的平均變化率教學(xué)重點(diǎn):平均變化率的概念、函數(shù)在某點(diǎn)處附近的平均變化率;教學(xué)難點(diǎn):平均變化率的概念.教學(xué)過程:一.創(chuàng)設(shè)情景為了描述現(xiàn)實(shí)世界中運(yùn)動(dòng)、過程等變化著的現(xiàn)象,在數(shù)學(xué)中引入了函數(shù),隨著對函數(shù)的研究,產(chǎn)生了微積分,微積分的創(chuàng)立以自然科學(xué)中四
2025-04-17 13:03
【摘要】合情推理與演繹推理歸納推理歌德巴赫猜想:“任何一個(gè)不小于6的偶數(shù)都等于兩個(gè)奇奇數(shù)之和”即:偶數(shù)=奇質(zhì)數(shù)+奇質(zhì)數(shù)哥德巴赫猜想(GoldbachConjecture)世界近代三大數(shù)學(xué)難題之一。哥德巴赫是德國一位中學(xué)教師,也是一位著名的數(shù)學(xué)家,生于1690年,1725年當(dāng)選為俄國彼得堡科學(xué)院院士。1742年,哥德巴赫
【摘要】數(shù)學(xué)選修2-2知識(shí)點(diǎn)總結(jié) 導(dǎo)數(shù)及其應(yīng)用 一.導(dǎo)數(shù)概念的引入 1.導(dǎo)數(shù)的物理意義:瞬時(shí)速率。一般的,函數(shù)在處的瞬時(shí)變化率是, 我們稱它為函數(shù)在處的導(dǎo)數(shù),記作或,即 = 例1.在高臺(tái)跳水運(yùn)動(dòng)中,運(yùn)動(dòng)員相對于水面的高度h(單位:m)與起跳后的時(shí)間t(單位:s)存在函數(shù)關(guān)系
2025-05-30 22:32
【摘要】2.3.2數(shù)學(xué)歸納法應(yīng)用舉例【學(xué)習(xí)要求】1.進(jìn)一步掌握數(shù)學(xué)歸納法的實(shí)質(zhì)與步驟,掌握用數(shù)學(xué)歸納法證明等式、不等式、整除問題、幾何問題等數(shù)學(xué)命題.2.掌握證明n=k+1成立的常見變形技巧:提公因式、添項(xiàng)、拆項(xiàng)、合并項(xiàng)、配方等.【學(xué)法指導(dǎo)】通過對數(shù)學(xué)歸納法的學(xué)習(xí),培養(yǎng)勇于探索、創(chuàng)新的個(gè)性品質(zhì),培養(yǎng)大膽猜想,小心求
2025-07-24 17:44
【摘要】第一篇:高中數(shù)學(xué)數(shù)學(xué)歸納法教案新人教A版選修4-5 教學(xué)要求:了解數(shù)學(xué)歸納法的原理,并能以遞推思想作指導(dǎo),理解數(shù)學(xué)歸納法的操作步驟,能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題,::: 一、復(fù)習(xí)準(zhǔn)備:...
2025-10-17 10:34
【摘要】復(fù)數(shù)z=a+bi直角坐標(biāo)系中的點(diǎn)Z(a,b)xyobaZ(a,b)建立了平面直角坐標(biāo)系來表示復(fù)數(shù)的平面x軸------實(shí)軸y軸------虛軸(數(shù))(形)------復(fù)數(shù)平面(簡稱復(fù)平面)一一對應(yīng)z=a+bi復(fù)數(shù)的幾何意義(一)
2024-11-18 15:23
【摘要】復(fù)習(xí):合情推理?歸納推理從特殊到一般?類比推理從特殊到特殊從具體問題出發(fā)觀察、分析比較、聯(lián)想提出猜想歸納類比觀察與是思考,2整除,,銅能夠?qū)щ?銅是金屬,
2024-11-18 15:24
【摘要】§本課時(shí)欄目開關(guān)填一填研一研練一練【學(xué)習(xí)要求】1.了解導(dǎo)數(shù)在解決實(shí)際問題中的作用.2.掌握利用導(dǎo)數(shù)解決簡單的實(shí)際生活中的優(yōu)化問題.【學(xué)法指導(dǎo)】1.在利用導(dǎo)數(shù)解決實(shí)際問題的過程中體會(huì)建模思想.2.感受導(dǎo)數(shù)知識(shí)在解決實(shí)際問題中的作
2024-11-18 08:07
【摘要】1.2.2函數(shù)的和、差、積、商的導(dǎo)數(shù)【學(xué)習(xí)要求】1.理解函數(shù)的和、差、積、商的求導(dǎo)法則.2.理解求導(dǎo)法則的證明過程,能夠綜合運(yùn)用導(dǎo)數(shù)公式和導(dǎo)數(shù)運(yùn)算法則求函數(shù)的導(dǎo)數(shù).【學(xué)法指導(dǎo)】應(yīng)用導(dǎo)數(shù)的四則運(yùn)算法則和已學(xué)過的常用函數(shù)的導(dǎo)數(shù)公式可迅速解決一類簡單函數(shù)的求導(dǎo)問題.要透徹理解函數(shù)求導(dǎo)法則的結(jié)構(gòu)內(nèi)涵,注
2024-11-17 23:13
【摘要】2.反證法理解反證法的概念,掌握反證法證題的步驟.本節(jié)重點(diǎn):反證法概念的理解以及反證法的證題步驟.本節(jié)難點(diǎn):應(yīng)用反證法解決問題.1.反證法假設(shè)原命題(即在原命題的條件下,結(jié)論不成立),經(jīng)過正確的推理,最后得出矛盾,因此說明,從而證明了,這種證明方法叫做反證法
2024-11-17 23:14
【摘要】歸納是通過對特例的觀察和綜合去發(fā)現(xiàn)一般規(guī)律,一般通過觀察圖形或分析式子尋找規(guī)律,歸納過程的典型步驟是:先在諸多特例中發(fā)現(xiàn)某些相似性,再把相似性推廣為一個(gè)明確表述的一般命題,最后對該命題進(jìn)行檢驗(yàn)或論證.[例1]在德國布萊梅舉行的第48屆世乒賽期間,某商場櫥窗里用同樣的乒乓球堆成若干堆“正三棱錐”形的展品,其中第1堆只有一層,就一
2024-11-17 19:03
【摘要】1.數(shù)的發(fā)展過程(經(jīng)歷):?自然數(shù)計(jì)數(shù)的需要(正整數(shù)和零)———————?負(fù)數(shù)表示相反意義的量解方程x+3=1————————?分?jǐn)?shù)測量、分配中的等分解方程3x=5(分?jǐn)?shù)集??)有理數(shù)集循環(huán)小數(shù)