【摘要】yxoF2MF1(1)雙曲線標準方程中,a0,b0,但a不一定大于b;有別于橢圓中ab.(2)雙曲線標準方程中,如果x2項的系數(shù)是正的,那么焦點在x軸上;如果y2項的系數(shù)是正的,那么焦點在y軸上.有別于橢圓通過比較分母的大小來判定焦點在哪一坐標軸上。(3)雙曲線標準方程中a、b、
2024-11-13 11:43
【摘要】東莞市樟木頭中學李鴻艷xyOKHFMl目標掌握拋物線的定義、標準方程、幾何圖形,能夠求出拋物線的方程,能夠解決簡單的實際問題..重點拋物線的方程的四種形式及應用.難點拋物線標準方程的推導過程.1、拋物線的定義,代數(shù)表達式,標準方程。2.前面我們學習了橢圓、雙曲線的哪些幾何性質?
2024-11-12 16:43
【摘要】莘縣第二中學高二數(shù)學◆選修1-1◆第2章橢圓的簡單幾何性質導學案編寫:張愛紅審核:張翠蘭§(第1課時)班級姓名組別代碼評價【使用說明與學法指導】1.在自習或自主時間通過閱讀課本用20分鐘把預習探究案中的所有知識完成。訓練案在自習或自主時間完成。2.重點預習
2025-08-17 14:17
【摘要】1直線與圓錐曲線的有關綜合問題,我們已經(jīng)接觸了一些,在我們看來就是三句話的實踐:(一)設而不求;(二)聯(lián)立方程組,根與系數(shù)的關系;(三)大膽計算分析,數(shù)形結合活思維.拋物線的簡單幾何性質(三)這一節(jié)我們來做幾個關于直線與拋物線的問題……2作圖直覺嘗試解答分析:
2024-11-09 08:09
【摘要】雙曲線的性質(一)莫旗職教中心徐志宏222bac??定義圖象方程焦點的關系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)122
2024-11-30 11:22
【摘要】嘉祥一中數(shù)學教研組:范景華如何精確地設計、制作、建造出現(xiàn)實生活中這些橢圓形的物件呢?生活中的橢圓一.課題引入:橢圓的形成過程行星運行的軌道我們的太陽系二.講授新課:平面內到兩個定點F1、F2的距離之和等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,
2024-11-12 19:04
【摘要】一、轉移代入法這個方法又叫相關點法或坐標代換法.即利用動點P’(x’,y’)是定曲線F(x,y)=0上的動點,另一動點P(x,y)依賴于P’(x’,y’),那么可尋求關系式x’=f(x,y),y’=g(x,y)后代入方程F(x’,y’)=0中,得到動點P的軌跡方程例1:已知點A(3,0),點P在圓x2+y2=1的上半圓周上(即y&g
2024-11-09 01:17
【摘要】橢圓的標準方程及其簡單幾何性質復習課橢圓橢圓的兩個定義橢圓的標準方程橢圓的幾何性質橢圓的有關應用一、知識點整理橢圓的兩個定義平面內與兩個定點F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點
2025-08-04 17:29
【摘要】復習::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當焦點在X軸上時當焦點在Y軸上時)0(12222????babyax)0(12222????
2024-11-21 02:20
【摘要】橢圓的簡單幾何性質(第三課時)直線與橢圓的弦長公式富源二中:何慧麗1.傾斜角、斜率:問題1:一、有關直線問題2121tanyykxx?????(5)一般式:(4)截距式:(3)兩點式:(1)點斜式:(2)斜截式:2.直線方程的五種形式.()yykx
2024-11-24 14:11
【摘要】第一節(jié)橢圓的標準方程考點一求橢圓的標準方程【思路點撥】先判斷焦點位置,確定出適合題意的橢圓標準方程的形式,最后由條件確定出a和b即可.【例1】求適合下列條件的橢圓的標準方程:(1)兩個焦點的坐標分別為(-4,0)和(4,0),且橢圓經(jīng)過點(5,0);(2)焦點在y軸上,且經(jīng)過兩個點(0,2)和(1,0)。變∶根據(jù)下列條件,求橢圓
2025-07-15 02:23
【摘要】高二數(shù)學教(學)案揚州市第一中學第1頁共4頁課題:橢圓的幾何性質(2)教學目標:(對稱性、范圍、頂點、離心率);.教學重、難點:目標1;數(shù)形結合思想的貫徹,運用曲線方程研究幾何性質.一.教學過程:(一)復習
2025-08-26 18:33
【摘要】標準方程圖象范圍對稱性頂點坐標焦點坐標半軸長焦距a,b,c關系離心率22221(0)xyabab????22221(0)xyabba????關于x軸、y軸成
2025-07-25 11:30
【摘要】課題:橢圓的簡單幾何性質設計意圖:本節(jié)內容是橢圓的簡單幾何性質,是在學習了橢圓的定義和標準方程之后展開的,它是繼續(xù)學習雙曲線、拋物線的幾何性質的基礎。因此本節(jié)內容起到一個鞏固舊知,熟練方法,拓展新知的承上啟下的作用,是發(fā)展學生自主學習能力,培養(yǎng)創(chuàng)新能力的好素材。本教案的設計遵循啟發(fā)式的教學原則,以培養(yǎng)學生的數(shù)形結合的思想方法,培養(yǎng)學生觀察、實驗、探究、驗證與交流等數(shù)學活動能力。教學目
2025-04-17 04:22
【摘要】 方法技巧第五節(jié) 橢圓 最新考綱 考情分析 、幾何圖形、標準方程及簡單幾何性質(范圍、對稱性、頂點、離心率). 2.了解橢圓的簡單應用. 3.理解數(shù)形結合的思想. 、標準方程、幾何性...
2025-04-03 02:19