【摘要】第二課時橢圓方程及性質(zhì)的應(yīng)用第二課時課堂互動講練知能優(yōu)化訓(xùn)練課前自主學(xué)案學(xué)習(xí)目標(biāo)學(xué)習(xí)目標(biāo),體會一元二次方程的根與系數(shù)的關(guān)系的應(yīng)用.2.掌握橢圓的離心率的求法及其范圍的確定.3.掌握點與橢圓、直線與橢圓的位置關(guān)系,并能利用橢圓的有關(guān)性質(zhì)解決實際問題.課前自主學(xué)案溫故夯基
2024-12-02 18:11
【摘要】例5過拋物線焦點F的直線交拋物線于A,B兩點,通過點A和拋物線頂點的直線交拋物線的準(zhǔn)線于點D,求證:直線DB平行于拋物線的對稱軸。xyOFABD例1已知拋物線的方程為y2=4x,直線l過定點P(-2,1),斜率為k,k為何值時,直線l與拋物線y2=4x:只有一個公共點;有兩個公共
2024-11-29 03:31
【摘要】質(zhì)D復(fù)習(xí)思考?橢圓的定義、標(biāo)準(zhǔn)方程是什么??平面上到兩個定點的距離的和(2a)等于定長(大于|F1F2|)的點的軌跡叫橢圓。?定點F1、F2叫做橢圓的焦點。?兩焦點之間的距離叫做焦距(2C)。)0(12222????babyax)0(12222?
2024-08-13 14:44
【摘要】課題:橢圓的定義及幾何性質(zhì)汝城一中高三文科數(shù)學(xué)組(1)橢圓的第一定義為:平面內(nèi)與兩個定點F1、F2的距離之和為常數(shù)(大于|F1F2|)(2)橢圓的第二定義為:平面內(nèi)到一定點F與到一定直線l的距離之比為一常數(shù)e(0<e<1)的點的軌跡叫做橢圓一、基礎(chǔ)知識復(fù)習(xí)標(biāo)準(zhǔn)方程
2024-11-29 06:05
【摘要】標(biāo)準(zhǔn)方程范圍對稱性頂點坐標(biāo)焦點坐標(biāo)半軸長離心率a、b、c的關(guān)系22221(0)xyabab????|x|≤a,|y|≤b關(guān)于x軸、y軸成軸對稱;關(guān)于原點成中心對稱(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)長半軸
2025-05-30 00:42
【摘要】橢圓方程及幾何性質(zhì)基礎(chǔ)知識梳理1.橢圓的定義(1)平面內(nèi)一點P與兩定點F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡,即若常數(shù)等于|F1F2|,則軌跡是.若常數(shù)小于|F1F2|,則軌跡
2025-05-14 12:12
【摘要】橢圓的幾何性質(zhì)知識回顧1F2Fxyo...M(x,y)(-c,0)(c,0)F1(0,-c)F2(0,c)xy0M(x,y)...12222??byax橢圓的標(biāo)準(zhǔn)方程:12222??bxay焦點在x軸時焦點
2024-08-13 10:43
2025-05-30 00:31
【摘要】(一)教學(xué)目標(biāo):橢圓的范圍、對稱性、對稱中心、離心率及頂點(截距).重點難點分析教學(xué)重點:橢圓的簡單幾何性質(zhì).教學(xué)難點:橢圓的簡單幾何性質(zhì).教學(xué)設(shè)計:【復(fù)習(xí)引入】1.橢圓的定義是什么?2.橢圓的標(biāo)準(zhǔn)方程是什么?【講授新課】利用橢圓的標(biāo)準(zhǔn)方程研究橢圓的幾何性質(zhì).以焦點在x軸上橢圓為例
2024-12-16 18:45
【摘要】復(fù)習(xí)::在同一平面內(nèi),到兩定點F1、F2的距離和為常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓。:22221(0)xyabab????22221(0)yxabab????a,b,c的關(guān)系是:a2=b2+c2一、橢圓的范圍oxy由122
2025-02-03 22:19
【摘要】2020年12月18日星期五xyoF1F2M(-c,0)(c,0)(x,y)xyoF1(0,c)F2(0,-c)M(x,y)22221(0)yxabab????22221(0)xyabab????|MF1|+|MF2|=2a|F1F2
2024-12-01 21:09
【摘要】1、向量定義復(fù)習(xí)2、向量加法的三角形法則3、向量加法的平行四邊形法則注:兩個向量的和仍是向量。具有大小和方向的量ABCABDC問題:一架飛機(jī)由北京飛往香港,然后再由香港返回北京,我們把北京記作A點,香港記作B點,那么這
2024-12-02 16:45
【摘要】2020/12/19拋物線的幾何性質(zhì)2020/12/19結(jié)合拋物線y2=2px(p0)的標(biāo)準(zhǔn)方程和圖形,探索其的幾何性質(zhì):(1)范圍(2)對稱性(3)頂點類比探索x≥0,y∈R關(guān)于x軸對稱,對稱軸又叫拋物線的軸.拋物線和它的軸的交點.2020/12/19(4)離心率
2024-12-02 17:11
【摘要】一、知識再現(xiàn)前面我們學(xué)習(xí)了橢圓的簡單的幾何性質(zhì):范圍、對稱性、頂點、離心率.我們來共同回顧一下橢圓x2/a2+y2/b2=1(ab0)幾何性質(zhì)的具體內(nèi)容及其研究方法.12222??byax橢圓
2024-12-02 19:05
【摘要】橢圓的幾何性質(zhì)練習(xí):?已知橢圓的中心在原點,焦點在坐標(biāo)軸上,離心率為,一條準(zhǔn)線方程為y=3,求該橢圓的方程。53例題12xy1P259P2橢圓+=上有一點,它到左準(zhǔn)線的距離等于,那么點到右焦點的距離是多少?例題22
2024-09-04 01:15