【摘要】橢圓的定義、性質(zhì)及標(biāo)準(zhǔn)方程1.橢圓的定義:⑴第一定義:平面內(nèi)與兩個定點(diǎn)的距離之和等于常數(shù)(大于)的點(diǎn)的軌跡叫做橢圓。這兩個定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做橢圓的焦距。⑵第二定義:動點(diǎn)到定點(diǎn)的距離和它到定直線的距離之比等于常數(shù),則動點(diǎn)的軌跡叫做橢圓。定點(diǎn)是橢圓的焦點(diǎn),定直線叫做橢圓的準(zhǔn)線,常數(shù)叫做橢圓的離心率。說明:①若常數(shù)等于,則動點(diǎn)軌跡是線段。②若常數(shù)小于,則動點(diǎn)
2025-07-25 00:12
【摘要】......圓錐曲線與方程(雙曲線練習(xí)題)一、選擇題,那么的取值范圍是()A. B. C. D.、右焦點(diǎn)分別為是雙曲線上一點(diǎn),滿足,直線與圓相切,則雙曲線的離心率為(
2025-03-24 23:28
【摘要】F2F1M定義曲線方程焦點(diǎn)關(guān)系y·oxF1F2··yoF1F2··|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2F(±c,0)
2024-11-06 14:33
【摘要】雙曲線的定義及標(biāo)準(zhǔn)方程[復(fù)習(xí)]1、求曲線方程的步驟一、建立坐標(biāo)系,設(shè)動點(diǎn)的坐標(biāo);二、找出動點(diǎn)滿足的幾何條件;三、將幾何條件化為代數(shù)條件;四、化簡,得所求方程。2、橢圓的定義到平面上兩定點(diǎn)F1,F(xiàn)2的距離之和(大于|F1F2|)為常數(shù)的點(diǎn)的軌跡3、橢圓的標(biāo)準(zhǔn)方程有幾類?[兩類][思考]到平面上兩定點(diǎn)
【摘要】習(xí)題精選精講【例1】若橢圓與雙曲線有相同的焦點(diǎn)F1,F(xiàn)2,P是兩條曲線的一個交點(diǎn),則|PF1|·|PF2|的值是()A.B.C.D.【解析】橢圓的長半軸為雙曲線的實半軸為,故選A.【評注】嚴(yán)格區(qū)分橢圓與雙曲線的第一定義,是破解本題的關(guān)鍵.【例2】已
2025-08-05 04:18
【摘要】橢圓與雙曲線的對偶性質(zhì)--(會推導(dǎo)的經(jīng)典結(jié)論)高三數(shù)學(xué)備課組雙曲線1.雙曲線(a>0,b>0)的兩個頂點(diǎn)為,,與y軸平行的直線交雙曲線于P1、P2時A1P1與A2P2交點(diǎn)的軌跡方程是.2.過雙曲線(a>0,b>o)上任一點(diǎn)任意作兩條傾斜角互補(bǔ)的直線交雙曲線于B,C兩點(diǎn),則直線BC有定向且(常數(shù)).3.若P為雙曲線(a>0,b>0)右(或左)支上除頂點(diǎn)外的任一點(diǎn),F1,
2025-08-17 04:20
【摘要】●教學(xué)目標(biāo)、實虛半軸、焦點(diǎn)、離心率、漸近線方程.●教學(xué)重點(diǎn)雙曲線的幾何性質(zhì)●教學(xué)難點(diǎn)雙曲線的漸近線●教學(xué)方法學(xué)導(dǎo)式●教具準(zhǔn)備幻燈片、三角板●教學(xué)過程:師:上一節(jié),我們學(xué)習(xí)了雙曲
2024-12-08 01:51
【摘要】yxoF2MF1(1)雙曲線標(biāo)準(zhǔn)方程中,a0,b0,但a不一定大于b;有別于橢圓中ab.(2)雙曲線標(biāo)準(zhǔn)方程中,如果x2項的系數(shù)是正的,那么焦點(diǎn)在x軸上;如果y2項的系數(shù)是正的,那么焦點(diǎn)在y軸上.有別于橢圓通過比較分母的大小來判定焦點(diǎn)在哪一坐標(biāo)軸上。(3)雙曲線標(biāo)準(zhǔn)方程中a、b、
2024-11-13 11:43
【摘要】雙曲線方程和性質(zhì)應(yīng)用xyoax?或ax??ay??ay?或)0,(a?),0(a?xaby??xbay??ace?)(222bac??其中關(guān)于坐標(biāo)軸和原點(diǎn)都對稱性質(zhì)雙曲線)0,0(12222??
2024-11-12 17:25
【摘要】的幾何性質(zhì)(1)222bac??定義圖象方程焦點(diǎn)的關(guān)系||MF1|-|MF2||=2a(2a|F1F2|)F(±c,0)F(0,±c)12222??byax12222
2024-11-21 03:33
2024-11-09 23:30
【摘要】雙曲線及其標(biāo)準(zhǔn)方程(教案設(shè)計)一、教案目標(biāo):知識與技能:()理解雙曲線的定義及焦點(diǎn)、焦距的意義,掌握雙曲線的標(biāo)準(zhǔn)方程.()根據(jù)不同的題設(shè)條件,正確區(qū)分兩種不同的標(biāo)準(zhǔn)方程.過程與方法:()引導(dǎo)學(xué)生,通過與橢圓的對比去探索雙曲線標(biāo)準(zhǔn)方程的推導(dǎo),加深對數(shù)形結(jié)合思想及事物類比的研究方法的認(rèn)識.()從建立坐標(biāo)系、簡化方程過程中,培養(yǎng)學(xué)生觀察、分析、推理的能力.情感態(tài)
2025-07-14 18:58
【摘要】雙曲線的標(biāo)準(zhǔn)方程(第一課時) ?。ㄒ唬┙虒W(xué)目標(biāo) 掌握雙曲線的定義,會推導(dǎo)雙曲線的標(biāo)準(zhǔn)方程,能根據(jù)條件求簡單的雙曲線標(biāo)準(zhǔn)方程. ?。ǘ┙虒W(xué)教程 【復(fù)習(xí)提問】 由一位學(xué)生口答,教師板書. 問題:橢圓的第一定義是什么? 問題:橢圓的標(biāo)準(zhǔn)方程是怎樣的? 【新知探索】 .雙曲線的概念 如果把上述定義中的“距離的和”改為“距離的差”,那么點(diǎn)的軌跡
2025-07-14 19:04
【摘要】......橢圓和雙曲線綜合練習(xí)卷1.設(shè)橢圓,雙曲線,(其中)的離心率分別為,則()A.B.C.D.與1大小不確定【答案】,,所以,故選B.2.已知雙曲線的左焦點(diǎn)為,過點(diǎn)作雙曲線的一
2025-06-29 13:59
【摘要】......第一部分雙曲線相關(guān)知識點(diǎn)講解一.雙曲線的定義及雙曲線的標(biāo)準(zhǔn)方程:1雙曲線定義:到兩個定點(diǎn)F1與F2的距離之差的絕對值等于定長(<|F1F2|)的點(diǎn)的軌跡((為常數(shù)))這兩個定點(diǎn)叫雙曲線的焦點(diǎn).要注意兩點(diǎn):(1