【摘要】創(chuàng)設情境,引入新課復習提問:(2)正三角形是軸對稱性圖形嗎?(1)什么是軸對稱圖形(3)圓是否為軸對稱圖形?如果是,它的對稱軸是什么?你能找到多少條對稱軸?如果一個圖形沿著一條直線對折,兩側的圖形能完全重合,這個圖形就是軸對稱圖形。有幾條對稱軸?是3在白紙上任意作一個圓和這個
2024-12-07 13:07
【摘要】垂徑定理第2章圓垂徑定理知識目標目標突破第2章圓總結反思知識目標1.通過圓的對稱性折疊操作,理解垂徑定理.2.通過對垂徑定理的理解,采用轉化和對稱思想解決有關直角三角形的計算與證明問題.3.在掌握垂徑定理的基礎上,能應用垂徑定理解決實際生活中
2025-06-13 12:13
2025-06-13 12:12
【摘要】九年級數學(上)第四章:對圓的進一步認識-垂徑定理圓的對稱性?圓是軸對稱圖形嗎?想一想1駛向勝利的彼岸如果是,它的對稱軸是什么?你能找到多少條對稱軸?●O你是用什么方法解決上述問題的??圓是中心對稱圖形嗎?如果是,它的對稱中心是什么?你能找到多少條對稱軸?你又是用什
2024-12-08 09:59
【摘要】銳角三角函數第1課時正切與坡度1.理解正切的意義,并能舉例說明;(重點)2.能夠根據正切的概念進行簡單的計算;(重點)3.能運用正切、坡度解決問題.(難點)一、情境導入觀察與思考:某體育館為了方便不同需求的觀眾,設計了不同坡度的臺階.問
2024-12-08 10:43
【摘要】第三章圓垂徑定理廣東省佛山華英學校羅建輝?等腰三角形是軸對稱圖形嗎??如果將一等腰三角形沿底邊上的高對折,可以發(fā)現什么結論??如果以這個等腰三角形的頂角頂點為圓心,腰長為半徑畫圓,得到的圖形是否是軸對稱圖形呢?類比引入③AM=BM,●OABCDM└①CD是直徑
2024-11-17 00:01
【摘要】問題:你知道趙州橋嗎?它是1300多年前我國隋代建造的石拱橋,是我國古代人民勤勞與智慧的結晶.它的主橋是圓弧形,它的跨度(弧所對的弦的長)為,拱高(弧的中點到弦的距離)為,你能求出趙洲橋主橋拱的半徑嗎?趙州橋主橋拱的半徑是多少?第三章圓·OABCDE沿著圓的任意一條
2024-11-17 22:39
【摘要】ODCBAM垂直于┗平分這條弦,并且平分弦所對的弧弦的直徑在⊙O中,直徑CD⊥弦AB∴AM=BM=AB21⌒AC=BC⌒⌒AD=BD⌒ODCBAM┗在⊙O中,直徑CD平分弦AB∴CD⊥AB⌒
2024-11-30 08:46
【摘要】北師大版九年級下冊第三章《圓》EAODBC問題:左圖中AB為圓O的直徑,CD為圓O的弦。相交于點E,當弦CD在圓上運動的過程中有沒有特殊情況?運動CD直徑AB和弦CD互相垂直特殊情況在⊙O中,AB為弦,CD為直徑,AB⊥CD提問:你在圓中還能找到那些相等的量?并證明
2024-12-07 15:23
【摘要】勤學的人,總是感到時間過得太快;懶惰的人,卻總是埋怨時間跑得太慢。
2024-11-25 22:46
【摘要】第一篇:數學人教版九年級上冊垂徑定理的練習 《垂直于弦的直徑》同步試題 一、選擇題 1.下列命題中,正確的是().A.平分一條直徑的弦必垂直于這條直徑 B.平分一條弧的直線垂直于這條弧所對的弦...
2024-10-10 17:44
【摘要】垂徑定理一、知識點回顧:1.圓上各點到圓心的距離都等于_________,到圓心的距離等于半徑的點都在_________。2.如右圖,____________是直徑,___________是弦,____________是劣弧,________是優(yōu)弧,__________是半圓。3.圓的半徑是4,則弦長x的取值范圍是________
2024-12-08 03:45
【摘要】第3章圓的基本性質3.3垂徑定理第1課時垂徑定理筑方法勤反思學知識第3章圓的基本性質學知識垂徑定理知識點一圓的對稱性圓是________圖形,每一條____________都是它的對稱軸.1.圓有________條對稱軸,它的對稱軸是___________.
2025-06-13 21:01
【摘要】15.如圖,⊙O是△ABC的外接圓,⊙O的半徑R=2,sinB=,則弦AC的長為。14.如圖,將半徑為4cm的圓形紙片折疊后,圓弧恰好經過圓心,則折痕的長是cm.AOB第14題圖1.(2010江西省南昌)如圖.⊙O中,AB、AC是弦,O在∠ABO的內部,,,,則下列關系中,正
2025-04-07 02:05
【摘要】北京二十中王云松初中數學資源網O圓除了是旋轉對稱圖形外,還是軸對稱圖形提問:圓是什么對稱圖形?初中數學資源網OACBNMD圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。初中數學資源網OACBN
2024-11-12 02:37